dc.contributor.author |
Stoilos, G |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Pan, JZ |
en |
dc.contributor.author |
Simou, N |
en |
dc.contributor.author |
Tzouvaras, V |
en |
dc.date.accessioned |
2014-03-01T02:45:46Z |
|
dc.date.available |
2014-03-01T02:45:46Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32376 |
|
dc.subject |
Fuzzy Description Logic |
en |
dc.subject.other |
Description logic (DL) |
en |
dc.subject.other |
Description Logics (DL) |
en |
dc.subject.other |
Ontology languages |
en |
dc.subject.other |
Reasoning algorithms |
en |
dc.subject.other |
Reasoning systems |
en |
dc.subject.other |
Semantic Web (SWeb) |
en |
dc.subject.other |
Use cases |
en |
dc.subject.other |
Data description |
en |
dc.subject.other |
Inference engines |
en |
dc.subject.other |
Information theory |
en |
dc.subject.other |
Ontology |
en |
dc.subject.other |
Programming theory |
en |
dc.subject.other |
Semantic Web |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Fuzzy inference |
en |
dc.title |
Reasoning with the fuzzy description logic f-SHIN: Theory, practice and applications |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-89765-1-16 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-89765-1-16 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like Description Logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications. Many of the tasks of SW like trust, matching, merging, ranking usually involve confidence or truth degrees that one requires to represent and reason about. Fuzzy DLs are able to represent vague concepts such as a ""Tall"" person, a ""Hot"" place, a ""MiddleAged"" person, a ""near"" destination and many more. In the current paper we present a fuzzy extension to the DL SHIN. First, we present the semantics while latter a detailed reasoning algorithm that decides most of the key inference tasks of fuzzy-SHIN. Finally, we briefly present the fuzzy reasoning system FiRE, which implements the proposed algorithm and two use case scenarios where we have applied fuzzy DLs through FiRE. © 2008 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-89765-1-16 |
en |
dc.identifier.volume |
5327 LNAI |
en |
dc.identifier.spage |
262 |
en |
dc.identifier.epage |
281 |
en |