dc.contributor.author |
Simou, N |
en |
dc.contributor.author |
Athanasiadis, T |
en |
dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:45:47Z |
|
dc.date.available |
2014-03-01T02:45:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32387 |
|
dc.subject |
Fuzzy Reasoning |
en |
dc.subject |
Image Segmentation |
en |
dc.subject |
Knowledge Base |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Neural Network Classifier |
en |
dc.subject |
Semantic Analysis |
en |
dc.subject |
Confidence Level |
en |
dc.subject.other |
Confidence levels |
en |
dc.subject.other |
Fuzzy reasoning |
en |
dc.subject.other |
Knowledge base |
en |
dc.subject.other |
Machine learning techniques |
en |
dc.subject.other |
Multi-media analysis |
en |
dc.subject.other |
Multimedia contents |
en |
dc.subject.other |
Network classifiers |
en |
dc.subject.other |
Neural network classifier |
en |
dc.subject.other |
Research areas |
en |
dc.subject.other |
Semantic adaptation |
en |
dc.subject.other |
Semantic analysis |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Classifiers |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Knowledge based systems |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Semantic adaptation of neural network classifiers in image segmentation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-87536-9_93 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-87536-9_93 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Semantic analysis of multimedia content is an on going research area that has gained a lot of attention over the last few years. Additionally, machine learning techniques are widely used for multimedia analysis with great success. This work presents a combined approach to semantic adaptation of neural network classifiers in multimedia framework. It is based on a fuzzy reasoning engine which is able to evaluate the outputs and the confidence levels of the neural network classifier, using a knowledge base. Improved image segmentation results are obtained, which are used for adaptation of the network classifier, further increasing its ability to provide accurate classification of the specific content. © Springer-Verlag Berlin Heidelberg 2008. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-87536-9_93 |
en |
dc.identifier.volume |
5163 LNCS |
en |
dc.identifier.issue |
PART 1 |
en |
dc.identifier.spage |
907 |
en |
dc.identifier.epage |
916 |
en |