HEAL DSpace

Sequence clustering with the self-organizing hidden markov model map

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ferles, C en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:45:47Z
dc.date.available 2014-03-01T02:45:47Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32389
dc.subject Cross Section en
dc.subject deoxyribonucleic acid en
dc.subject Dimensional Reduction en
dc.subject Hybrid Approach en
dc.subject Large Scale en
dc.subject Prior Knowledge en
dc.subject Protein Family en
dc.subject ribonucleic acid en
dc.subject Self Organization en
dc.subject Self Organized Map en
dc.subject Sequence Analysis en
dc.subject Sequence Space en
dc.subject Theoretical Foundation en
dc.subject Experience Base en
dc.subject Hidden Markov Model en
dc.subject.other Algorithmic realization en
dc.subject.other Biological sequence analysis en
dc.subject.other Deoxyribonucleic acids en
dc.subject.other Dimensionality reduction en
dc.subject.other Hybrid approach en
dc.subject.other Large-scale sequences en
dc.subject.other Learning mechanism en
dc.subject.other Prior knowledge en
dc.subject.other Probabilistic sequences en
dc.subject.other Protein chains en
dc.subject.other Protein family en
dc.subject.other Ribonucleic acid en
dc.subject.other Self organizing en
dc.subject.other Sequence data en
dc.subject.other Bioinformatics en
dc.subject.other Conformal mapping en
dc.subject.other DNA en
dc.subject.other Education en
dc.subject.other Hidden Markov models en
dc.subject.other Nucleic acids en
dc.subject.other Object recognition en
dc.subject.other Organic acids en
dc.subject.other RNA en
dc.subject.other Cluster analysis en
dc.title Sequence clustering with the self-organizing hidden markov model map en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696720 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696720 en
heal.identifier.secondary 4696720 en
heal.publicationDate 2008 en
heal.abstract A hybrid approach combining the Self- Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are blended together in an attempt to meet the increasing requirements imposed by the deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. Addressing many of the most intriguing biological sequence analysis problems is achieved through its automatic raw sequence data learning mechanism. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large- scale sequence spaces, and also, in sequence discrimination, search and classification. A comprehensive series of experiments based on the globin protein family demonstrates SOHMMM's sophisticated characteristics and advanced capabilities. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696720 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής