dc.contributor.author |
Ferles, C |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:45:47Z |
|
dc.date.available |
2014-03-01T02:45:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32389 |
|
dc.subject |
Cross Section |
en |
dc.subject |
deoxyribonucleic acid |
en |
dc.subject |
Dimensional Reduction |
en |
dc.subject |
Hybrid Approach |
en |
dc.subject |
Large Scale |
en |
dc.subject |
Prior Knowledge |
en |
dc.subject |
Protein Family |
en |
dc.subject |
ribonucleic acid |
en |
dc.subject |
Self Organization |
en |
dc.subject |
Self Organized Map |
en |
dc.subject |
Sequence Analysis |
en |
dc.subject |
Sequence Space |
en |
dc.subject |
Theoretical Foundation |
en |
dc.subject |
Experience Base |
en |
dc.subject |
Hidden Markov Model |
en |
dc.subject.other |
Algorithmic realization |
en |
dc.subject.other |
Biological sequence analysis |
en |
dc.subject.other |
Deoxyribonucleic acids |
en |
dc.subject.other |
Dimensionality reduction |
en |
dc.subject.other |
Hybrid approach |
en |
dc.subject.other |
Large-scale sequences |
en |
dc.subject.other |
Learning mechanism |
en |
dc.subject.other |
Prior knowledge |
en |
dc.subject.other |
Probabilistic sequences |
en |
dc.subject.other |
Protein chains |
en |
dc.subject.other |
Protein family |
en |
dc.subject.other |
Ribonucleic acid |
en |
dc.subject.other |
Self organizing |
en |
dc.subject.other |
Sequence data |
en |
dc.subject.other |
Bioinformatics |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
DNA |
en |
dc.subject.other |
Education |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Nucleic acids |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Organic acids |
en |
dc.subject.other |
RNA |
en |
dc.subject.other |
Cluster analysis |
en |
dc.title |
Sequence clustering with the self-organizing hidden markov model map |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/BIBE.2008.4696720 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/BIBE.2008.4696720 |
en |
heal.identifier.secondary |
4696720 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
A hybrid approach combining the Self- Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are blended together in an attempt to meet the increasing requirements imposed by the deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. Addressing many of the most intriguing biological sequence analysis problems is achieved through its automatic raw sequence data learning mechanism. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large- scale sequence spaces, and also, in sequence discrimination, search and classification. A comprehensive series of experiments based on the globin protein family demonstrates SOHMMM's sophisticated characteristics and advanced capabilities. |
en |
heal.journalName |
8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 |
en |
dc.identifier.doi |
10.1109/BIBE.2008.4696720 |
en |