dc.contributor.author |
Galmar, E |
en |
dc.contributor.author |
Athanasiadis, Th |
en |
dc.contributor.author |
Huet, B |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:45:47Z |
|
dc.date.available |
2014-03-01T02:45:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32394 |
|
dc.subject |
Image Segmentation |
en |
dc.subject |
Semantic Annotation |
en |
dc.subject |
Temporal Variation |
en |
dc.subject |
Video Segmentation |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Information theory |
en |
dc.subject.other |
Labeling |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Technical presentations |
en |
dc.subject.other |
Video recording |
en |
dc.subject.other |
Video signal processing |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Graph structures |
en |
dc.subject.other |
Object labeling |
en |
dc.subject.other |
Real video sequences |
en |
dc.subject.other |
Region labeling |
en |
dc.subject.other |
Semantic annotations |
en |
dc.subject.other |
Semantic properties |
en |
dc.subject.other |
Semantic segmentations |
en |
dc.subject.other |
Spatio temporals |
en |
dc.subject.other |
Spatio-temporal segmentations |
en |
dc.subject.other |
Spatiotemporal regions |
en |
dc.subject.other |
Temporal variations |
en |
dc.subject.other |
Two stages |
en |
dc.subject.other |
Video segmentations |
en |
dc.subject.other |
Video sequences |
en |
dc.subject.other |
Video shots |
en |
dc.subject.other |
Visual properties |
en |
dc.subject.other |
Semantics |
en |
dc.title |
Spatiotemporal semantic video segmentation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MMSP.2008.4665143 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MMSP.2008.4665143 |
en |
heal.identifier.secondary |
4665143 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, we propose a framework to extend semantic labeling of images to video shot sequences and achieve efficient and semantic-aware spatiotemporal video segmentation. This task faces two major challenges, namely the temporal variations within a video sequence which affect image segmentation and labeling, and the computational cost of region labeling. Guided by these limitations, we design a method where spatiotemporal segmentation and object labeling are coupled to achieve semantic annotation of video shots. An internal graph structure that describes both visual and semantic properties of image and video regions is adopted. The process of spatiotemporal semantic segmentation is subdivided in two stages: Firstly, the video shot is split into small block of frames. Spatiotemporal regions (volumes) are extracted and labeled individually within each block. Then, we iteratively merge consecutive blocks by a matching procedure which considers both semantic and visual properties. Results on real video sequences show the potential of our approach. © 2008 IEEE. |
en |
heal.journalName |
Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, MMSP 2008 |
en |
dc.identifier.doi |
10.1109/MMSP.2008.4665143 |
en |
dc.identifier.spage |
574 |
en |
dc.identifier.epage |
579 |
en |