dc.contributor.author |
Reppas, A |
en |
dc.contributor.author |
Tsoumanis, AC |
en |
dc.contributor.author |
Siettos, CI |
en |
dc.date.accessioned |
2014-03-01T02:45:49Z |
|
dc.date.available |
2014-03-01T02:45:49Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32408 |
|
dc.subject |
Bifurcation Diagram |
en |
dc.subject |
Coarse Grained |
en |
dc.subject |
Critical Point |
en |
dc.subject |
Epidemic Model |
en |
dc.subject |
Infection Control |
en |
dc.subject |
Oscillations |
en |
dc.subject |
Time Dependent |
en |
dc.subject.other |
Amplitude oscillation |
en |
dc.subject.other |
Bifurcation diagram |
en |
dc.subject.other |
Coarse-grained |
en |
dc.subject.other |
Computational protocols |
en |
dc.subject.other |
Control policy |
en |
dc.subject.other |
Critical points |
en |
dc.subject.other |
Epidemic models |
en |
dc.subject.other |
Equation-Free |
en |
dc.subject.other |
Illustrative examples |
en |
dc.subject.other |
Individual-based |
en |
dc.subject.other |
Infection control |
en |
dc.subject.other |
Multiscale |
en |
dc.subject.other |
Regular networks |
en |
dc.subject.other |
Stochastic epidemics |
en |
dc.subject.other |
Systematic study |
en |
dc.subject.other |
Time-dependent solutions |
en |
dc.subject.other |
Bioinformatics |
en |
dc.subject.other |
Disease control |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Simulators |
en |
dc.title |
The influence of infection control policies: A systematic study of the dynamics of an individual-based epidemic model with isolation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/BIBE.2008.4696766 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/BIBE.2008.4696766 |
en |
heal.identifier.secondary |
4696766 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We present and discuss how the so called Equation-free approach for multi-scale computations can be used to systematically study certain aspects of the dynamics of detailed individual-based epidemic simulators. In particular we address the development of a computational protocol that enables detailed epidemic simulators to converge to their coarse-grained critical points which mark the onset of instabilities including the emergence of time-dependent solutions. As our illustrative example, we choose a simple individual-based stochastic epidemic model deploying in a fixed random regular network. We show how control policies based on the isolation of the infected population can dramatically influence the dynamics of the disease resulting to big-amplitude oscillations. We also construct the approximate coarse-grained bifurcation diagrams illustrating the dependence of the solutions on the disease characteristics. |
en |
heal.journalName |
8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 |
en |
dc.identifier.doi |
10.1109/BIBE.2008.4696766 |
en |