dc.contributor.author |
Bakopoulos, P |
en |
dc.contributor.author |
Karanasiou, I |
en |
dc.contributor.author |
Zakynthinos, P |
en |
dc.contributor.author |
Pleros, N |
en |
dc.contributor.author |
Avramopoulos, H |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.date.accessioned |
2014-03-01T02:45:49Z |
|
dc.date.available |
2014-03-01T02:45:49Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32413 |
|
dc.subject |
Biomolecule ""fingerprint"" |
en |
dc.subject |
Difference frequency generation |
en |
dc.subject |
Fabry-Perot filter |
en |
dc.subject |
Neural function |
en |
dc.subject |
Supercontinuum generation |
en |
dc.subject |
Terahertz imaging |
en |
dc.subject.other |
Difference frequency generation |
en |
dc.subject.other |
Fabry-Perot filter |
en |
dc.subject.other |
Neural function |
en |
dc.subject.other |
Supercontinuum generation |
en |
dc.subject.other |
Terahertz imaging |
en |
dc.subject.other |
Biomolecules |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Fabry-Perot interferometers |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
Molecules |
en |
dc.subject.other |
Optical fibers |
en |
dc.subject.other |
Optoelectronic devices |
en |
dc.subject.other |
Technical presentations |
en |
dc.subject.other |
Optical frequency conversion |
en |
dc.title |
Towards brain imaging using THz technology |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IST.2008.4659930 |
en |
heal.identifier.secondary |
4659930 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IST.2008.4659930 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We demonstrate recent advances towards the development of a novel 2-D THz imaging system for brain imaging applications both at macroscopic and at biomolecule level. A frequency synthesized THz source based on Difference Frequency Generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly-nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry-Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2-2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap towards capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques. ©2008 IEEE. |
en |
heal.journalName |
IST 2008 - IEEE Workshop on Imaging Systems and Techniques Proceedings |
en |
dc.identifier.doi |
10.1109/IST.2008.4659930 |
en |
dc.identifier.spage |
7 |
en |
dc.identifier.epage |
10 |
en |