HEAL DSpace

Translating multiscale cancer models into clinical trials: Simulating breast cancer tumor dynamics within the framework of the ""Trial of Principle"" clinical trial and the ACGT project

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kolokotroni, EA en
dc.contributor.author Stamatakos, GS en
dc.contributor.author Dionysiou, DD en
dc.contributor.author Georgiadi, ECh en
dc.contributor.author Desmedt, C en
dc.contributor.author Graf, NM en
dc.date.accessioned 2014-03-01T02:45:50Z
dc.date.available 2014-03-01T02:45:50Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32416
dc.subject Cancer Treatment en
dc.subject Clinical Data en
dc.subject Clinical Practice en
dc.subject Clinical Trial en
dc.subject Computer Model en
dc.subject Dynamic Model en
dc.subject European Commission en
dc.subject in silico en
dc.subject Multilevel Model en
dc.subject Tumor Growth en
dc.subject Breast Cancer en
dc.subject.other Breast Cancer en
dc.subject.other Breast cancer tumors en
dc.subject.other Cancer models en
dc.subject.other Cancer treatment en
dc.subject.other Clinical data en
dc.subject.other Clinical information en
dc.subject.other Clinical practices en
dc.subject.other Clinical trial en
dc.subject.other Computer models en
dc.subject.other Dead cells en
dc.subject.other Discrete state en
dc.subject.other Dynamics models en
dc.subject.other Epirubicin en
dc.subject.other European Commission en
dc.subject.other In-silico en
dc.subject.other Multilevel modeling en
dc.subject.other Multiscale en
dc.subject.other Optimization process en
dc.subject.other Transition rates en
dc.subject.other Treatment optimization en
dc.subject.other Tumor growth en
dc.subject.other Bioinformatics en
dc.subject.other Dynamics en
dc.subject.other Optimization en
dc.subject.other Patient treatment en
dc.subject.other Tumors en
dc.title Translating multiscale cancer models into clinical trials: Simulating breast cancer tumor dynamics within the framework of the ""Trial of Principle"" clinical trial and the ACGT project en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696758 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696758 en
heal.identifier.secondary 4696758 en
heal.publicationDate 2008 en
heal.abstract The potential of cancer multilevel modeling has been particularly emphasized over the past years. Integration of multiscale experimental and clinical information pertaining to cancer via advanced computer models seems to considerably accelerate optimization of cancer treatment in the patient individualized context. However, a sine qua non prerequisite for such models to reach clinical practice is to be thoroughly tested through clinical trials for validation and optimization purposes. This is one of the major goals of the European Commission funded ""Advancing Clinico-Genomic Trials on Cancer"" (ACGT) project. This paper presents a discrete state based, four dimensional, multiscale tumor dynamics model that has been specially developed by the In Silico Oncology Group in order to mimick the Trial Of Principle (TOP) clinical trial concerning breast cancer treated with epirubicin. The TOP trial constitutes one of the ACGT clinical trials. A substantial part of the model can address other tumor types as well. The actual pseudoanonymized imaging, histopathological, molecular and clinical data of the patient are exploited. Special emphasis is put on the effect of cancer stem/clonogenic, progenitor, differentiated and dead cells, the cell category transition rates and the cell category relative populations within the tumor from the treatment baseline onwards. The importance of adaptation of the cell category relative populations to the cell category transition rates for free tumor growth is revealed and the concept of a pertinent nomogram is introduced. A method which ensures adaptation of these two sets of entities at the beginning of the simulation execution is proposed and subsequently successfully applied. Convergence and code checking issues are addressed. Indicative parametric/sensitivity studies are presented along with specific numerical findings. The model's behavior substantiates its potential to serve as the basis of a treatment optimization system following an eventually succesful completion of the clinical validation and optimization process. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696758 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής