dc.contributor.author |
Kalatzis, N |
en |
dc.contributor.author |
Roussaki, L |
en |
dc.contributor.author |
Liampotis, N |
en |
dc.contributor.author |
Strimpakou, M |
en |
dc.contributor.author |
Pils, C |
en |
dc.date.accessioned |
2014-03-01T02:45:50Z |
|
dc.date.available |
2014-03-01T02:45:50Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32423 |
|
dc.subject |
Basic prediction rules |
en |
dc.subject |
Context prediction |
en |
dc.subject |
History of context |
en |
dc.subject |
Rule generation models |
en |
dc.subject |
User status |
en |
dc.subject.other |
Basic prediction rules |
en |
dc.subject.other |
Context data |
en |
dc.subject.other |
Context information |
en |
dc.subject.other |
Context prediction |
en |
dc.subject.other |
Context- awareness |
en |
dc.subject.other |
Context-aware systems |
en |
dc.subject.other |
Human machine interaction |
en |
dc.subject.other |
Minimal processing |
en |
dc.subject.other |
Multiple contexts |
en |
dc.subject.other |
Pervasive computing systems |
en |
dc.subject.other |
Pervasive environments |
en |
dc.subject.other |
Prediction rule generation |
en |
dc.subject.other |
Rule generation models |
en |
dc.subject.other |
Storage resources |
en |
dc.subject.other |
Success ratio |
en |
dc.subject.other |
User status |
en |
dc.subject.other |
User-centric |
en |
dc.subject.other |
Data compression |
en |
dc.subject.other |
Ubiquitous computing |
en |
dc.title |
User-centric inference based on history of context data in pervasive environments |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1387309.1387316 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1387309.1387316 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Pervasive computing systems need to be strongly proactive. Context-awareness contributes to this, thus minimizing human-machine interaction. Context-aware systems are greatly enhanced by the utilization of recorded history of the users' situations and interactions. In this paper, an approach is proposed for modelling, storing and exploiting history-of-context, in order to predict or estimate context information. The proposed framework is context-type-independent, requires minimal processing and storage resources, and can be used for data compression. It is based on multiple context prediction rule generation models, demonstrates high prediction success ratio, and has been empirically evaluated via extensive experiments. Copyright 2008 ACM. |
en |
heal.journalName |
Proceedings of the International Conference on Pervasive Services, ICPS 2008 3rd International Workshop on Services Integration in Pervasive Environments, SIPE'08 |
en |
dc.identifier.doi |
10.1145/1387309.1387316 |
en |
dc.identifier.spage |
25 |
en |
dc.identifier.epage |
30 |
en |