HEAL DSpace

User-centric inference based on history of context data in pervasive environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalatzis, N en
dc.contributor.author Roussaki, L en
dc.contributor.author Liampotis, N en
dc.contributor.author Strimpakou, M en
dc.contributor.author Pils, C en
dc.date.accessioned 2014-03-01T02:45:50Z
dc.date.available 2014-03-01T02:45:50Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32423
dc.subject Basic prediction rules en
dc.subject Context prediction en
dc.subject History of context en
dc.subject Rule generation models en
dc.subject User status en
dc.subject.other Basic prediction rules en
dc.subject.other Context data en
dc.subject.other Context information en
dc.subject.other Context prediction en
dc.subject.other Context- awareness en
dc.subject.other Context-aware systems en
dc.subject.other Human machine interaction en
dc.subject.other Minimal processing en
dc.subject.other Multiple contexts en
dc.subject.other Pervasive computing systems en
dc.subject.other Pervasive environments en
dc.subject.other Prediction rule generation en
dc.subject.other Rule generation models en
dc.subject.other Storage resources en
dc.subject.other Success ratio en
dc.subject.other User status en
dc.subject.other User-centric en
dc.subject.other Data compression en
dc.subject.other Ubiquitous computing en
dc.title User-centric inference based on history of context data in pervasive environments en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1387309.1387316 en
heal.identifier.secondary http://dx.doi.org/10.1145/1387309.1387316 en
heal.publicationDate 2008 en
heal.abstract Pervasive computing systems need to be strongly proactive. Context-awareness contributes to this, thus minimizing human-machine interaction. Context-aware systems are greatly enhanced by the utilization of recorded history of the users' situations and interactions. In this paper, an approach is proposed for modelling, storing and exploiting history-of-context, in order to predict or estimate context information. The proposed framework is context-type-independent, requires minimal processing and storage resources, and can be used for data compression. It is based on multiple context prediction rule generation models, demonstrates high prediction success ratio, and has been empirically evaluated via extensive experiments. Copyright 2008 ACM. en
heal.journalName Proceedings of the International Conference on Pervasive Services, ICPS 2008 3rd International Workshop on Services Integration in Pervasive Environments, SIPE'08 en
dc.identifier.doi 10.1145/1387309.1387316 en
dc.identifier.spage 25 en
dc.identifier.epage 30 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής