HEAL DSpace

A hybrid Web-based measure for computing semantic relatedness between words

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Spanakis, G en
dc.contributor.author Siolas, G en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:45:53Z
dc.date.available 2014-03-01T02:45:53Z
dc.date.issued 2009 en
dc.identifier.issn 10823409 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32444
dc.subject Computational Semantics en
dc.subject Information Retrieval en
dc.subject semantic relatedness en
dc.subject Semantic Relations en
dc.subject Support Vector Machine en
dc.subject Web Mining en
dc.subject Web Search Engine en
dc.subject.other Benchmark datasets en
dc.subject.other Hypernyms en
dc.subject.other Regression problem en
dc.subject.other Semantic relatedness en
dc.subject.other Semantically-related words en
dc.subject.other Similarity scores en
dc.subject.other Web search engines en
dc.subject.other Wordnet en
dc.subject.other Artificial intelligence en
dc.subject.other Information retrieval en
dc.subject.other Information services en
dc.subject.other Natural language processing systems en
dc.subject.other Search engines en
dc.subject.other Semantic Web en
dc.subject.other Semantics en
dc.subject.other World Wide Web en
dc.title A hybrid Web-based measure for computing semantic relatedness between words en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICTAI.2009.64 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICTAI.2009.64 en
heal.identifier.secondary 5363726 en
heal.publicationDate 2009 en
heal.abstract In this paper, we build a hybrid Web-based metric for computing semantic relatedness between words. The method exploits page counts, titles, snippets and URLs returned by a Web search engine. Our technique uses traditional information retrieval methods and is enhanced by page-count-based similarity scores which are integrated with automatically extracted lexico-synantic patterns from titles, snippets and URLs for all kinds of semantically related words provided by WordNet (synonyms, hypernyms, meronyms, antonyms). A support vector machine is used to solve the arising regression problem of word relatedness and the proposed method is evaluated on standard benchmark datasets. The method achieves an overall correlation of 0.88, which is the highest among other metrics up to date. © 2009 IEEE. en
heal.journalName Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI en
dc.identifier.doi 10.1109/ICTAI.2009.64 en
dc.identifier.spage 441 en
dc.identifier.epage 448 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής