HEAL DSpace

A methodology for optimizing the acquisition time of a clinical PET scan using GATE

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakatsanis, NA en
dc.contributor.author Loudos, G en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:54Z
dc.date.available 2014-03-01T02:45:54Z
dc.date.issued 2009 en
dc.identifier.issn 10957863 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32446
dc.subject Body Size en
dc.subject Critical Parameter en
dc.subject Motion Artifact en
dc.subject Nuclear Medicine en
dc.subject Simulation Study en
dc.subject Time Window en
dc.subject Low Dose en
dc.subject Noise Equivalent Count en
dc.subject.other Acquisition time en
dc.subject.other Body sizes en
dc.subject.other Counting rates en
dc.subject.other Critical parameter en
dc.subject.other Deadtime en
dc.subject.other Different sizes en
dc.subject.other Dose range en
dc.subject.other Energy windows en
dc.subject.other Imaging protocol en
dc.subject.other Low dose en
dc.subject.other Motion artifact en
dc.subject.other Noise equivalent count rates en
dc.subject.other Noise equivalent counts en
dc.subject.other Optimization methodology en
dc.subject.other Peak values en
dc.subject.other PET Scan en
dc.subject.other PET/CT scanners en
dc.subject.other Projection data en
dc.subject.other Rate performance en
dc.subject.other Scanner systems en
dc.subject.other Scanning time en
dc.subject.other Simulation packages en
dc.subject.other Simulation studies en
dc.subject.other Statistical quality en
dc.subject.other Time windows en
dc.subject.other Image quality en
dc.subject.other Nuclear medicine en
dc.subject.other Nuclear physics en
dc.subject.other Optimization en
dc.subject.other Positron emission tomography en
dc.subject.other Probability density function en
dc.subject.other Vehicle routing en
dc.subject.other Scanning en
dc.title A methodology for optimizing the acquisition time of a clinical PET scan using GATE en
heal.type conferenceItem en
heal.identifier.primary 10.1109/NSSMIC.2009.5401619 en
heal.identifier.secondary http://dx.doi.org/10.1109/NSSMIC.2009.5401619 en
heal.identifier.secondary 5401619 en
heal.publicationDate 2009 en
heal.abstract The acquisition time of a PET scan is a critical parameter when designing imaging protocols for clinical nuclear medicine studies. The statistical quality of the projection data increases when longer acquisition times are selected. However, very large scanning periods can limit the number of PET studies performed and, moreover, increase the probability of motion artifacts. The competing objectives of good statistical quality and short acquisition time are both depending on the counting rate performance of the system. The noise equivalent count rate (NECR), which measures the rate in which statistically important coincidence events are counted by a PET system, is employed in this study to quantify the counting-rate performance. Thus, higher NECR values allow for acquisition of relatively larger number of true coincidence counts at the same scanning time. NECR is directly depending, for a particular patient-scanner system, on the amount of radioactive dose injected into the patient and acquires a peak value for a certain range of dose values. Thus, a minimal acquisition time can be achieved by estimating this optimal dose range prior to a scan. In this simulation study we propose an alternative optimization methodology. Initially, a regular low dose is selected and used as a constant. Then the NECR response is modeled, using Geant4 Application for Tomography Emission (GATE) simulation package, as a function of the parameters of the patient's body size, the coincidence time window, the dead-time response and the energy window. Subsequently, the optimal scanning time is estimated, based on the simulated NECR, as the minimal scanning time necessary to acquire 20 million noise equivalent counts (NEC) per bed position. For this purpose, we employed a validated Biograph PET/CT scanner model, where six hypothetical dead-time responses were simulated as well as three coincidence time windows. Finally, we used three NCAT phantoms of different size, and four energy windows. ©2009 IEEE. en
heal.journalName IEEE Nuclear Science Symposium Conference Record en
dc.identifier.doi 10.1109/NSSMIC.2009.5401619 en
dc.identifier.spage 2896 en
dc.identifier.epage 2901 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής