dc.contributor.author |
Juyumaya, J |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T02:45:57Z |
|
dc.date.available |
2014-03-01T02:45:57Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0218-2165 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32485 |
|
dc.subject |
E-condition |
en |
dc.subject |
Markov trace |
en |
dc.subject |
Singular braids |
en |
dc.subject |
Singular knots |
en |
dc.subject |
YokonumaHecke algebra |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HECKE ALGEBRA |
en |
dc.subject.other |
BRAIDS |
en |
dc.title |
An invariant for singular knots |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1142/S0218216509007324 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218216509007324 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we introduce a Jones-type invariant for singular knots, using a Markov trace on the YokonumaHecke algebras Yd,n(u) and the theory of singular braids. The YokonumaHecke algebras have a natural topological interpretation in the context of framed knots. Yet, we show that there is a homomorphism of the singular braid monoid SBn into the algebra Y d,n(u). Surprisingly, the trace does not normalize directly to yield a singular link invariant, so a condition must be imposed on the trace variables. Assuming this condition, the invariant satisfies a skein relation involving singular crossings, which arises from a quadratic relation in the algebra Yd,n(u). © 2009 World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
Journal of Knot Theory and its Ramifications |
en |
dc.identifier.doi |
10.1142/S0218216509007324 |
en |
dc.identifier.isi |
ISI:000268123400007 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
825 |
en |
dc.identifier.epage |
840 |
en |