HEAL DSpace

Combined texture features for improved classification of suspicious areas in autofluorescence bronchoscopy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bountris, P en
dc.contributor.author Apostolou, A en
dc.contributor.author Haritou, M en
dc.contributor.author Passalidou, E en
dc.contributor.author Koutsouris, D en
dc.date.accessioned 2014-03-01T02:46:03Z
dc.date.available 2014-03-01T02:46:03Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32513
dc.subject Autofluorescence bronchoscopy (AFB) en
dc.subject Classification en
dc.subject Feature selection en
dc.subject Lung cancer en
dc.subject Texture en
dc.subject.other Autofluorescence en
dc.subject.other Classification features en
dc.subject.other Classification models en
dc.subject.other Clinical trial en
dc.subject.other Detection and localization en
dc.subject.other Diagnostic value en
dc.subject.other False positive en
dc.subject.other Feature selection en
dc.subject.other Feature selection methods en
dc.subject.other High rate en
dc.subject.other Lung Cancer en
dc.subject.other Malignant lesion en
dc.subject.other Texture features en
dc.subject.other Biological organs en
dc.subject.other Endoscopy en
dc.subject.other Evolutionary algorithms en
dc.subject.other Information technology en
dc.subject.other Intelligent computing en
dc.subject.other Textures en
dc.title Combined texture features for improved classification of suspicious areas in autofluorescence bronchoscopy en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ITAB.2009.5394448 en
heal.identifier.secondary http://dx.doi.org/10.1109/ITAB.2009.5394448 en
heal.identifier.secondary 5394448 en
heal.publicationDate 2009 en
heal.abstract Autofluorescence bronchoscopy (AFB) has been utilized over th e past decade, proving to be a powerful tool for the detection and localization of premalignant and malignant lesions of the airways. AFB is, however, characterized by low specificity and a high rate of false positive findings (FPFs). The majority of FPFs are due to inflammations, as they often fluoresce at the same wavelengths with cancer. According to several clinical trials, the percentage of the FPFs is a bout 30%. In this paper we present an intelligent computing system based on combined texture features, feature selection methods and classification models, for improved classification of suspicious areas of the bronchial mucosa, in order to decrease the rate of FPFs, to increase the specificity and sensitivity of AFB and enhance the overall diagnostic value of the AFB method. ©2009 IEEE. en
heal.journalName Final Program and Abstract Book - 9th International Conference on Information Technology and Applications in Biomedicine, ITAB 2009 en
dc.identifier.doi 10.1109/ITAB.2009.5394448 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής