dc.contributor.author |
Kollia, I |
en |
dc.contributor.author |
Simou, N |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:05Z |
|
dc.date.available |
2014-03-01T02:46:05Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32525 |
|
dc.subject |
Artificial Intelligent |
en |
dc.subject |
Cluster System |
en |
dc.subject |
connectionist models |
en |
dc.subject |
Image Segmentation |
en |
dc.subject |
Knowledge Representation |
en |
dc.subject |
Multimedia Application |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Artificial Neural Network |
en |
dc.subject.other |
Classification and clustering |
en |
dc.subject.other |
Connectionist models |
en |
dc.subject.other |
Formal knowledge |
en |
dc.subject.other |
Image segments |
en |
dc.subject.other |
Multimedia applications |
en |
dc.subject.other |
Novel architecture |
en |
dc.subject.other |
Proposed architectures |
en |
dc.subject.other |
Recent trends |
en |
dc.subject.other |
Symbolic knowledge |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Knowledge representation |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Connectionist models for formal knowledge adaptation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-04277-5_47 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-04277-5_47 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Both symbolic knowledge representation systems and artificial neural networks play a significant role in Artificial Intelligence. A recent trend in the field aims at interweaving these techniques, in order to improve robustness and performance of classification and clustering systems. In this paper, we present a novel architecture based on the connectionist adaptation of ontological knowledge. The proposed architecture was used effectively to improve image segment classification within a multimedia application scenario. © 2009 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-04277-5_47 |
en |
dc.identifier.volume |
5769 LNCS |
en |
dc.identifier.issue |
PART 2 |
en |
dc.identifier.spage |
465 |
en |
dc.identifier.epage |
474 |
en |