dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:05Z |
|
dc.date.available |
2014-03-01T02:46:05Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32536 |
|
dc.subject |
Book Embedding |
en |
dc.subject |
Hamiltonian Path |
en |
dc.subject |
Linear Time |
en |
dc.subject.other |
Book embedding |
en |
dc.subject.other |
Embeddings |
en |
dc.subject.other |
Hamiltonian path |
en |
dc.subject.other |
Linear time |
en |
dc.subject.other |
Planar digraphs |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Hamiltonians |
en |
dc.subject.other |
Computational efficiency |
en |
dc.title |
Crossing-free acyclic hamiltonian path completion for planar st-digraphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-10631-6_89 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-10631-6_89 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this paper we study the problem of existence of a crossing-free acyclic hamiltonian path completion (for short, HP-completion) set for embedded upward planar digraphs. In the context of book embeddings, this question becomes: given an embedded upward planar digraph G, determine whether there exists an upward 2-page book embedding of G preserving the given planar embedding. Given an embedded st-digraph G which has a crossing-free HP-completion set, we show that there always exists a crossing-free HP-completion set with at most two edges per face of G. For an embedded N-free upward planar digraph G, we show that there always exists a crossing-free acyclic HP-completion set for G which, moreover, can be computed in linear time. For a width-k embedded planar st-digraph G, we show that it can be efficiently tested whether G admits a crossing-free acyclic HP-completion set. © 2009 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-10631-6_89 |
en |
dc.identifier.volume |
5878 LNCS |
en |
dc.identifier.spage |
882 |
en |
dc.identifier.epage |
891 |
en |