HEAL DSpace

Crossing-optimal acyclic hamiltonian path completion and its application to upward topological book embeddings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mchedlidze, T en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:46:05Z
dc.date.available 2014-03-01T02:46:05Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32537
dc.subject Book Embedding en
dc.subject Hamiltonian Path en
dc.subject.other Acyclic digraph en
dc.subject.other Book embedding en
dc.subject.other Crossing minimization en
dc.subject.other Edge crossing en
dc.subject.other Embeddings en
dc.subject.other Hamiltonian digraphs en
dc.subject.other Hamiltonian path en
dc.subject.other Computation theory en
dc.subject.other Crossings (pipe and cable) en
dc.subject.other Equivalence classes en
dc.subject.other Hamiltonians en
dc.subject.other Meats en
dc.subject.other Graph theory en
dc.title Crossing-optimal acyclic hamiltonian path completion and its application to upward topological book embeddings en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-00202-1_22 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-00202-1_22 en
heal.publicationDate 2009 en
heal.abstract Given an embedded planar acyclic digraph G, we define the problem of acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM) to be the problem of determining a hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to an acyclic hamiltonian digraph. Our results include: 1. We provide a characterization under which a triangulated st-digraph G is hamiltonian. 2. For the class of planar st-digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. Based on this equivalence we infer for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. © Springer-Verlag Berlin Heidelberg 2009. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-00202-1_22 en
dc.identifier.volume 5431 LNCS en
dc.identifier.spage 250 en
dc.identifier.epage 261 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής