dc.contributor.author |
Mchedlidze, T |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:05Z |
|
dc.date.available |
2014-03-01T02:46:05Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32537 |
|
dc.subject |
Book Embedding |
en |
dc.subject |
Hamiltonian Path |
en |
dc.subject.other |
Acyclic digraph |
en |
dc.subject.other |
Book embedding |
en |
dc.subject.other |
Crossing minimization |
en |
dc.subject.other |
Edge crossing |
en |
dc.subject.other |
Embeddings |
en |
dc.subject.other |
Hamiltonian digraphs |
en |
dc.subject.other |
Hamiltonian path |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Crossings (pipe and cable) |
en |
dc.subject.other |
Equivalence classes |
en |
dc.subject.other |
Hamiltonians |
en |
dc.subject.other |
Meats |
en |
dc.subject.other |
Graph theory |
en |
dc.title |
Crossing-optimal acyclic hamiltonian path completion and its application to upward topological book embeddings |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-00202-1_22 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-00202-1_22 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Given an embedded planar acyclic digraph G, we define the problem of acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM) to be the problem of determining a hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to an acyclic hamiltonian digraph. Our results include: 1. We provide a characterization under which a triangulated st-digraph G is hamiltonian. 2. For the class of planar st-digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. Based on this equivalence we infer for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. © Springer-Verlag Berlin Heidelberg 2009. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-00202-1_22 |
en |
dc.identifier.volume |
5431 LNCS |
en |
dc.identifier.spage |
250 |
en |
dc.identifier.epage |
261 |
en |