dc.contributor.author |
Alberti, S |
en |
dc.contributor.author |
Ansermet, J-P |
en |
dc.contributor.author |
Avramides, KA |
en |
dc.contributor.author |
Fasel, D |
en |
dc.contributor.author |
Hogge, J-P |
en |
dc.contributor.author |
Kern, S |
en |
dc.contributor.author |
Lievin, C |
en |
dc.contributor.author |
Liu, Y |
en |
dc.contributor.author |
Macor, A |
en |
dc.contributor.author |
Pagonakis, I |
en |
dc.contributor.author |
Silva, M |
en |
dc.contributor.author |
Tran, MQ |
en |
dc.contributor.author |
Tran, TM |
en |
dc.contributor.author |
Wagner, D |
en |
dc.date.accessioned |
2014-03-01T02:46:06Z |
|
dc.date.available |
2014-03-01T02:46:06Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32543 |
|
dc.subject |
High Frequency |
en |
dc.subject |
Low Power |
en |
dc.subject |
Nmr Spectroscopy |
en |
dc.subject |
Solid State Nmr |
en |
dc.subject |
Superconducting Magnets |
en |
dc.subject |
Electron Beam |
en |
dc.subject |
Electron Cyclotron |
en |
dc.subject |
Second Harmonic |
en |
dc.subject.other |
Electron cyclotron frequency |
en |
dc.subject.other |
Gyrotron design |
en |
dc.subject.other |
High frequency HF |
en |
dc.subject.other |
Low Power |
en |
dc.subject.other |
NMR spectrometer |
en |
dc.subject.other |
NMR spectroscopy |
en |
dc.subject.other |
Proton NMR |
en |
dc.subject.other |
Reference parameters |
en |
dc.subject.other |
RF frequencies |
en |
dc.subject.other |
Second harmonics |
en |
dc.subject.other |
Solid-state NMR spectroscopy |
en |
dc.subject.other |
Cyclotrons |
en |
dc.subject.other |
Electron beams |
en |
dc.subject.other |
Electron guns |
en |
dc.subject.other |
Helium |
en |
dc.subject.other |
Nuclear magnetic resonance |
en |
dc.subject.other |
Nuclear magnetic resonance spectroscopy |
en |
dc.subject.other |
Optical frequency conversion |
en |
dc.subject.other |
Spectrometers |
en |
dc.subject.other |
Spectrometry |
en |
dc.subject.other |
Spin polarization |
en |
dc.subject.other |
Superconducting magnets |
en |
dc.subject.other |
Gyrotrons |
en |
dc.title |
Design of a frequency-tunable gyrotron for DNP-enhanced NMR spectroscopy |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIMW.2009.5324906 |
en |
heal.identifier.secondary |
5324906 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIMW.2009.5324906 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We report on the design of a modular low-power (10-50W) high-frequency gyrotron (265-530GHz) for DNP enhanced Solid-State NMR spectroscopy. With the view of covering a wide range of frequencies, a 9.7T helium-free superconducting magnet (SCM) is planned for the gyrotron operation on either the fundamental or second harmonic of the electron cyclotron frequency. The gyrotron design is based on a triode electron gun (Vk=15kV, Ib=100mA, Va= 6-8kV) which is very flexible for adapting the electron beam properties to a wide variety of cavities operating at the fundamental or at the second harmonic. The gyrotron is designed for a lateral output with an internal Vlasov-type converter. The reference parameters for application of DNP-enhanced NMR spectroscopy on a 400MHz (1H) spectrometer are optimized with a RF frequency tunability corresponding to twice the proton NMR frequency. The modularity of the construction of the gyrotron allows for the possibility of changing only some elements like the cavity-uptaper system in order to adapt to the wide range of NMR spectrometers existing at EPFL. © 2009 IEEE. |
en |
heal.journalName |
34th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2009 |
en |
dc.identifier.doi |
10.1109/ICIMW.2009.5324906 |
en |