HEAL DSpace

Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic signals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Andreadis, II en
dc.contributor.author Giannakakis, GA en
dc.contributor.author Papageorgiou, C en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:46:06Z
dc.date.available 2014-03-01T02:46:06Z
dc.date.issued 2009 en
dc.identifier.issn 1557170X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32545
dc.subject Electroencephalogram en
dc.subject Reading Disability en
dc.subject Statistical Analysis en
dc.subject Time Series Data en
dc.subject Control Subjects en
dc.subject.other Approximate entropy en
dc.subject.other Asynchrony en
dc.subject.other Classification scheme en
dc.subject.other EEG signals en
dc.subject.other Electroencephalogram signals en
dc.subject.other Electroencephalographic signals en
dc.subject.other Feature input en
dc.subject.other Physiological signals en
dc.subject.other Statistical analysis en
dc.subject.other Statistical parameters en
dc.subject.other Time-series data en
dc.subject.other Biology en
dc.subject.other Physiological models en
dc.subject.other Time series en
dc.subject.other Electroencephalography en
dc.title Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic signals en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2009.5332798 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2009.5332798 en
heal.identifier.secondary 5332798 en
heal.publicationDate 2009 en
heal.abstract Dyslexia constitutes a specific reading disability, a condition characterized by severe difficulty in the mastery of reading despite normal intelligence or adequate education. Electroencephalogram (EEG) signal may be able to play an important role in the diagnosis of dyslexia. The Approximate Entropy (ApEn) is a recently formulated statistical parameter used to quantify the regularity of a time series data of physiological signals. In this paper, we initially estimated the ApEn values in signals recorded from controls subjects and dyslectic children. These values were firstly used for the statistical analysis of the two groups and secondly as feature input in a classification scheme. We also used the cross-ApEn methodology to get a measure of the asynchrony of the signals recorded from different electrodes. This preliminary study provides promising results towards correct identification of dyslexic cases, analyzing the corresponding EEG signals. ©2009 IEEE. en
heal.journalName Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 en
dc.identifier.doi 10.1109/IEMBS.2009.5332798 en
dc.identifier.volume 2009 en
dc.identifier.spage 6292 en
dc.identifier.epage 6295 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής