dc.contributor.author |
Dervos, CT |
en |
dc.contributor.author |
Mergos, JA |
en |
dc.contributor.author |
Skafidas, PD |
en |
dc.contributor.author |
Athanassopoulou, MD |
en |
dc.contributor.author |
Vassiliou, P |
en |
dc.date.accessioned |
2014-03-01T02:46:07Z |
|
dc.date.available |
2014-03-01T02:46:07Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1070-9878 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32561 |
|
dc.subject |
Dielectric polarization |
en |
dc.subject |
Interface |
en |
dc.subject |
Nano-dielectric |
en |
dc.subject |
Permittivity measurement |
en |
dc.subject |
Surface |
en |
dc.subject |
Water |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Crystalline powder |
en |
dc.subject.other |
Dehydration process |
en |
dc.subject.other |
Dielectric permittivities |
en |
dc.subject.other |
Dielectric polarization |
en |
dc.subject.other |
Dissipation factors |
en |
dc.subject.other |
Effect of water |
en |
dc.subject.other |
Function of frequency |
en |
dc.subject.other |
High vacuum |
en |
dc.subject.other |
Humidity levels |
en |
dc.subject.other |
Induced polarization |
en |
dc.subject.other |
Interface |
en |
dc.subject.other |
Nano powders |
en |
dc.subject.other |
Nanodielectrics |
en |
dc.subject.other |
Powdered materials |
en |
dc.subject.other |
Relative dielectric constant |
en |
dc.subject.other |
TiO |
en |
dc.subject.other |
Vacuum dehydration |
en |
dc.subject.other |
Water types |
en |
dc.subject.other |
XRD |
en |
dc.subject.other |
Alumina |
en |
dc.subject.other |
Calcination |
en |
dc.subject.other |
Carbonate minerals |
en |
dc.subject.other |
Dehydration |
en |
dc.subject.other |
Dewatering |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Oxide minerals |
en |
dc.subject.other |
Particle size |
en |
dc.subject.other |
Permittivity |
en |
dc.subject.other |
Permittivity measurement |
en |
dc.subject.other |
Polarization |
en |
dc.subject.other |
Titanium dioxide |
en |
dc.subject.other |
Vacuum |
en |
dc.subject.other |
Vacuum applications |
en |
dc.subject.other |
Water absorption |
en |
dc.subject.other |
Phase interfaces |
en |
dc.title |
Effect of water on permittivity of nanodielectrics exposed to the atmosphere |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/TDEI.2009.5361575 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TDEI.2009.5361575 |
en |
heal.identifier.secondary |
5361575 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Relative dielectric constant and dissipation factor (tan delta) values as a function of frequency have been measured for a variety of water types. The effect of water absorption on the permittivity properties of crystalline powders or nanopowders when exposed to various humidity levels is also examined. Powdered materials were characterized by XRD and were consisting of calcite (CaCO3), anatase, rutile (TiO2), gamma- and delta-alumina (Al2O3). The induced polarization changes in the materials by the applied dehydration process, i.e. either high vacuum of 10(-4) Pa (10(-6) mbar) drying, or calcination in air at temperatures of up to 600 degrees C, were investigated. The advantage offered by vacuum dehydration is that nano-dielectrics maintain their particle size and crystal integrity. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Dielectrics and Electrical Insulation |
en |
dc.identifier.doi |
10.1109/TDEI.2009.5361575 |
en |
dc.identifier.isi |
ISI:000272796500009 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1558 |
en |
dc.identifier.epage |
1565 |
en |