HEAL DSpace

Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bampas, E en
dc.contributor.author Gasieniec, L en
dc.contributor.author Hanusse, N en
dc.contributor.author Ilcinkas, D en
dc.contributor.author Klasing, R en
dc.contributor.author Kosowski, A en
dc.date.accessioned 2014-03-01T02:46:08Z
dc.date.available 2014-03-01T02:46:08Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32570
dc.subject Case Study en
dc.subject Random Walk en
dc.subject.other Euler tour en
dc.subject.other Initial configuration en
dc.subject.other Large diameter en
dc.subject.other Lock-in en
dc.subject.other Lock-in time en
dc.subject.other Non-trivial en
dc.subject.other Port numbers en
dc.subject.other Random Walk en
dc.subject.other Router mechanisms en
dc.subject.other Router model en
dc.subject.other Undirected graph en
dc.title Euler tour lock-in problem in the rotor-router model: I choose pointers and you choose port numbers en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-04355-0_44 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-04355-0_44 en
heal.publicationDate 2009 en
heal.abstract The rotor-router model, also called the Propp machine, was first considered as a deterministic alternative to the random walk. It is known that the route in an undirected graph G=(V,E), where |V|=n and |E|=m, adopted by an agent controlled by the rotor-router mechanism forms eventually an Euler tour based on arcs obtained via replacing each edge in G by two arcs with opposite direction. The process of ushering the agent to an Euler tour is referred to as the lock-in problem. In recent work [11] Yanovski et al. proved that independently of the initial configuration of the rotor-router mechanism in G the agent locks-in in time bounded by 2mD, where D is the diameter of G. In this paper we examine the dependence of the lock-in time on the initial configuration of the rotor-router mechanism. The case study is performed in the form of a game between a player intending to lock-in the agent in an Euler tour as quickly as possible and its adversary with the counter objective. First, we observe that in certain (easy) cases the lock-in can be achieved in time O(m). On the other hand we show that if adversary is solely responsible for the assignment of ports and pointers, the lock-in time Ω(m•D) can be enforced in any graph with m edges and diameter D. Furthermore, we show that if provides its own port numbering after the initial setup of pointers by , the complexity of the lock-in problem is bounded by O(m • min {logm,D}). We also propose a class of graphs in which the lock-in requires time Ω(m •logm). In the remaining two cases we show that the lock-in requires time Ω(m •D) in graphs with the worst-case topology. In addition, however, we present non-trivial classes of graphs with a large diameter in which the lock-in time is O(m). © 2009 Springer Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-04355-0_44 en
dc.identifier.volume 5805 LNCS en
dc.identifier.spage 423 en
dc.identifier.epage 435 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής