HEAL DSpace

Independent component analysis for coastal water mapping using hyperspectral datasets

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vassilia, K en
dc.contributor.author Polychronis, K en
dc.contributor.author Styliani, I en
dc.date.accessioned 2014-03-01T02:46:12Z
dc.date.available 2014-03-01T02:46:12Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32598
dc.subject Blind Source Separation en
dc.subject Case Study en
dc.subject Coastal Waters en
dc.subject Dimensional Reduction en
dc.subject Discrete Wavelet Transform en
dc.subject hyperspectral data en
dc.subject In Situ Measurement en
dc.subject Independent Component Analysis en
dc.subject Noise Suppression en
dc.subject Independent Component en
dc.subject.other Airborne hyperspectral data en
dc.subject.other Coastal waters en
dc.subject.other Data sets en
dc.subject.other Dimensionality reduction en
dc.subject.other Endmembers en
dc.subject.other FastICA en
dc.subject.other HyperSpectral en
dc.subject.other ICA algorithms en
dc.subject.other In-situ measurement en
dc.subject.other Independent components en
dc.subject.other Independent signals en
dc.subject.other Noise suppression en
dc.subject.other Statistical problems en
dc.subject.other Three-level en
dc.subject.other Thresholding en
dc.subject.other Water turbidity en
dc.subject.other Apartment houses en
dc.subject.other Blind source separation en
dc.subject.other Discrete wavelet transforms en
dc.subject.other Hemodynamics en
dc.subject.other Mapping en
dc.subject.other Multivariant analysis en
dc.subject.other Remote sensing en
dc.subject.other Signal processing en
dc.subject.other Silicate minerals en
dc.subject.other Singular value decomposition en
dc.subject.other Speech analysis en
dc.subject.other Turbidity en
dc.subject.other Water analysis en
dc.subject.other Independent component analysis en
dc.title Independent component analysis for coastal water mapping using hyperspectral datasets en
heal.type conferenceItem en
heal.identifier.primary 10.1109/WHISPERS.2009.5289048 en
heal.identifier.secondary http://dx.doi.org/10.1109/WHISPERS.2009.5289048 en
heal.identifier.secondary 5289048 en
heal.publicationDate 2009 en
heal.abstract Independent Component Analysis (ICA) is considered to be one of the most recent and successful ways to produce independent components out of the hyperspectral cube. The tool tries to resolve the Blind Source Separation (BSS) statistical problem and has been applied to various case studies of hyperspectral datasets, for dimensionality reduction and separation of independent signal sources, i.e. endmembers. Many ICA algorithms have been proposed in the literature. In this study, the FastICA, JADE, BSS SVD, SONS, NG-OL, and SIMBEC algorithms were applied on airborne hyperspectral data for coastal water mapping. Emphasis was given on water turbidity. In order to enforce the capacities of FastICA, a methodology including the eigen-thresholding Harsanyi-Farrand-Chang noise suppression technique, as well as, three-level Discrete Wavelet Transform (DWT) was developed. Results were compared and evaluated with in situ measurements related to turbidity. ICA algorithms produced quite interesting results. The BSS SVD algorithm was proven the most efficient tool for coastal water mapping. © 2009 IEEE. en
heal.journalName WHISPERS '09 - 1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing en
dc.identifier.doi 10.1109/WHISPERS.2009.5289048 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής