dc.contributor.author |
Spyrou, E |
en |
dc.contributor.author |
Tolias, G |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.date.accessioned |
2014-03-01T02:46:13Z |
|
dc.date.available |
2014-03-01T02:46:13Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32606 |
|
dc.subject |
Cluster Algorithm |
en |
dc.subject |
Feature Detection |
en |
dc.subject |
Large Data Sets |
en |
dc.subject |
Large Scale |
en |
dc.subject.other |
Motion Picture Experts Group standards |
en |
dc.subject.other |
Thesauri |
en |
dc.subject.other |
Concept detections |
en |
dc.subject.other |
Descriptors |
en |
dc.subject.other |
High-level features |
en |
dc.subject.other |
Key frames |
en |
dc.subject.other |
Large data sets |
en |
dc.subject.other |
Model vectors |
en |
dc.subject.other |
Segmented regions |
en |
dc.subject.other |
Trecvid |
en |
dc.subject.other |
Video documents |
en |
dc.subject.other |
Video shots |
en |
dc.subject.other |
Clustering algorithms |
en |
dc.title |
Large scale concept detection in video using a region thesaurus |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-92892-8_20 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-92892-8_20 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper presents an approach on high-level feature detection within video documents, using a Region Thesaurus. A video shot is represented by a single keyframe and MPEG-7 features are extracted locally, from coarse segmented regions. Then a clustering algorithm is applied on those extracted regions and a region thesaurus is constructed to facilitate the description of each keyframe at a higher level than the low-level descriptors but at a lower than the high-level concepts. A model vector representation is formed and several high-level concept detectors are appropriately trained using a global keyframe annotation. The proposed approach is thoroughly evaluated on the TRECVID 2007 development data for the detection of nine high level concepts, demonstrating sufficient performance on large data sets. © 2008 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-92892-8_20 |
en |
dc.identifier.volume |
5371 LNCS |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
207 |
en |