HEAL DSpace

Large scale concept detection in video using a region thesaurus

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Spyrou, E en
dc.contributor.author Tolias, G en
dc.contributor.author Avrithis, Y en
dc.date.accessioned 2014-03-01T02:46:13Z
dc.date.available 2014-03-01T02:46:13Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32606
dc.subject Cluster Algorithm en
dc.subject Feature Detection en
dc.subject Large Data Sets en
dc.subject Large Scale en
dc.subject.other Motion Picture Experts Group standards en
dc.subject.other Thesauri en
dc.subject.other Concept detections en
dc.subject.other Descriptors en
dc.subject.other High-level features en
dc.subject.other Key frames en
dc.subject.other Large data sets en
dc.subject.other Model vectors en
dc.subject.other Segmented regions en
dc.subject.other Trecvid en
dc.subject.other Video documents en
dc.subject.other Video shots en
dc.subject.other Clustering algorithms en
dc.title Large scale concept detection in video using a region thesaurus en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-92892-8_20 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-92892-8_20 en
heal.publicationDate 2009 en
heal.abstract This paper presents an approach on high-level feature detection within video documents, using a Region Thesaurus. A video shot is represented by a single keyframe and MPEG-7 features are extracted locally, from coarse segmented regions. Then a clustering algorithm is applied on those extracted regions and a region thesaurus is constructed to facilitate the description of each keyframe at a higher level than the low-level descriptors but at a lower than the high-level concepts. A model vector representation is formed and several high-level concept detectors are appropriately trained using a global keyframe annotation. The proposed approach is thoroughly evaluated on the TRECVID 2007 development data for the detection of nine high level concepts, demonstrating sufficient performance on large data sets. © 2008 Springer Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-92892-8_20 en
dc.identifier.volume 5371 LNCS en
dc.identifier.spage 197 en
dc.identifier.epage 207 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής