HEAL DSpace

Mechanical stability determines stress fiber and focal adhesion orientation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stamenovic, D en
dc.contributor.author Lazopoulos, KA en
dc.contributor.author Pirentis, A en
dc.contributor.author Suki, B en
dc.date.accessioned 2014-03-01T02:46:13Z
dc.date.available 2014-03-01T02:46:13Z
dc.date.issued 2009 en
dc.identifier.issn 1865-5025 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32611
dc.subject Cytoskeleton en
dc.subject Elasticity en
dc.subject Focal adhesions en
dc.subject Potential en
dc.subject Stability en
dc.subject Stress fiber en
dc.subject Substrate stretching en
dc.subject.other conference paper en
dc.subject.other cytoskeleton en
dc.subject.other elasticity en
dc.subject.other energy en
dc.subject.other experimental study en
dc.subject.other feasibility study en
dc.subject.other focal adhesion en
dc.subject.other geometry en
dc.subject.other mathematical model en
dc.subject.other mechanical stability en
dc.subject.other medical literature en
dc.subject.other model en
dc.subject.other physical parameters en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other stress fiber en
dc.subject.other stretching en
dc.title Mechanical stability determines stress fiber and focal adhesion orientation en
heal.type conferenceItem en
heal.identifier.primary 10.1007/s12195-009-0093-3 en
heal.identifier.secondary http://dx.doi.org/10.1007/s12195-009-0093-3 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract It is well documented in a variety of adherent cell types that in response to anisotropic signals from the microenvironment cells alter their cytoskeletal organization. Previous theoretical studies of these phenomena were focused primarily on the elasticity of cytoskeletal actin stress fibers (SFs) and of the substrate while the contribution of focal adhesions (FAs) through which the cytoskeleton is linked to the external environment has not been considered. Here we propose a mathematical model comprised of a single linearly elastic SF and two identical linearly elastic FAs of a finite size at the endpoints of the SF to investigate cytoskeletal realignment in response to uniaxial stretching of the substrate. The model also includes the contribution of the chemical potential energies of the SF and the FAs to the total potential energy of the SF-FA assembly. Using the global (Maxwell's) stability criterion, we predict stable configurations of the SF-FA assembly in response to substrate stretching. Model predictions obtained for physiologically feasible values of model parameters are consistent with experimental data from the literature. The model shows that elasticity of SFs alone can not predict their realignment during substrate stretching and that geometrical and elastic properties of SFs and FAs need to be included. © 2009 Biomedical Engineering Society. en
heal.publisher SPRINGER en
heal.journalName Cellular and Molecular Bioengineering en
dc.identifier.doi 10.1007/s12195-009-0093-3 en
dc.identifier.isi ISI:000272671600003 en
dc.identifier.volume 2 en
dc.identifier.issue 4 en
dc.identifier.spage 475 en
dc.identifier.epage 485 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής