dc.contributor.author |
Lanaridis, A |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:14Z |
|
dc.date.available |
2014-03-01T02:46:14Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
10823409 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32622 |
|
dc.subject |
Artificial Intelligent |
en |
dc.subject |
Computer Game |
en |
dc.subject |
High Dimensionality |
en |
dc.subject |
Pattern Classification |
en |
dc.subject |
Polar Coordinate |
en |
dc.subject |
Multi Dimensional |
en |
dc.subject.other |
Benchmark tests |
en |
dc.subject.other |
Computer game |
en |
dc.subject.other |
Fuzzy pattern classification |
en |
dc.subject.other |
High dimensional spaces |
en |
dc.subject.other |
Hyper-surfaces |
en |
dc.subject.other |
Pattern classification |
en |
dc.subject.other |
Polar coordinate |
en |
dc.subject.other |
Raycasting |
en |
dc.subject.other |
UCI repository |
en |
dc.subject.other |
Computer programming |
en |
dc.subject.other |
Equivalence classes |
en |
dc.subject.other |
Pattern recognition systems |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.title |
Multi-dimensional raycasting for fuzzy pattern classification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICTAI.2009.66 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICTAI.2009.66 |
en |
heal.identifier.secondary |
5366372 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
One of the most important problems in artificial intelligence, namely pattern classication, is essentially equivalent to finding hyper-surfaces seperating the different classes of data in a high-dimensional space. A method called raycasting is commonly used in computer game programming to locate and describe surfaces in a 2-dimesional map. A viewer, situated at some point on this map, casts rays of light towards various directions, and the rays extend until they hit a part of a surface. As a result, the surface can be described in polar coordinates as a set of vectors of varying lengths and angles. In this work we present a pattern classification system loosely based on the raycasting concept. We modify the method to create fuzzy pattern classification rules in 2 dimensions, and then generalize the rules to high-dimensional spaces. The resulting classifier is tested on a number of benchmark tests from the UCI Repository. © 2009 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI |
en |
dc.identifier.doi |
10.1109/ICTAI.2009.66 |
en |
dc.identifier.spage |
742 |
en |
dc.identifier.epage |
749 |
en |