dc.contributor.author |
Papagianni, C |
en |
dc.contributor.author |
Pappas, C |
en |
dc.contributor.author |
Lefkaditis, N |
en |
dc.contributor.author |
Venieris, IS |
en |
dc.date.accessioned |
2014-03-01T02:46:17Z |
|
dc.date.available |
2014-03-01T02:46:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32645 |
|
dc.subject |
Network Design |
en |
dc.subject |
particle swarm optimizer |
en |
dc.subject |
Premature Convergence |
en |
dc.subject |
Capacitated Minimum Spanning Tree |
en |
dc.subject |
Encoding Decoding |
en |
dc.subject.other |
Capacitated minimum spanning tree problem |
en |
dc.subject.other |
Capacitated minimum spanning trees |
en |
dc.subject.other |
Evolutionary approach |
en |
dc.subject.other |
Gaussian mutation |
en |
dc.subject.other |
Metaheuristic |
en |
dc.subject.other |
Multi-level |
en |
dc.subject.other |
Premature convergence |
en |
dc.subject.other |
Random keys |
en |
dc.subject.other |
Real-world networks |
en |
dc.subject.other |
Computer science |
en |
dc.subject.other |
Decision trees |
en |
dc.subject.other |
Information technology |
en |
dc.subject.other |
Parallel architectures |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.title |
Particle swarm optimization for the multi level capacitated minimum spanning tree |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IMCSIT.2009.5352755 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IMCSIT.2009.5352755 |
en |
heal.identifier.secondary |
5352755 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In the presented study Particle Swarm Optimization will be applied on an instance of the Multi Level Capacitated Minimum Spanning Tree Problem. Specifically a diversity preservation global variant of the PSO meta-heuristic will be presented. The particular PSO variant includes Gaussian mutation to avoid premature convergence and alternative selection of the flight guide per particle. Obtained results are compared with corresponding evolutionary approaches. Potential tree so-lutions are encoded/decoded using Network Random Keys. A real world network design case is introduced. E 2009 IEEE. |
en |
heal.journalName |
Proceedings of the International Multiconference on Computer Science and Information Technology, IMCSIT '09 |
en |
dc.identifier.doi |
10.1109/IMCSIT.2009.5352755 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
765 |
en |
dc.identifier.epage |
770 |
en |