dc.contributor.author |
Karakasis, V |
en |
dc.contributor.author |
Goumas, G |
en |
dc.contributor.author |
Koziris, N |
en |
dc.date.accessioned |
2014-03-01T02:46:17Z |
|
dc.date.available |
2014-03-01T02:46:17Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
01903918 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32646 |
|
dc.subject |
Blocking |
en |
dc.subject |
Performance models |
en |
dc.subject |
Sparse matrix-vector multiplication |
en |
dc.subject.other |
Blocking method |
en |
dc.subject.other |
Blocking performance |
en |
dc.subject.other |
Computational kernels |
en |
dc.subject.other |
High demand |
en |
dc.subject.other |
Indexing structures |
en |
dc.subject.other |
Input matrices |
en |
dc.subject.other |
Memory access |
en |
dc.subject.other |
Memory bandwidths |
en |
dc.subject.other |
Memory subsystems |
en |
dc.subject.other |
Optimization techniques |
en |
dc.subject.other |
Performance Model |
en |
dc.subject.other |
Prefetching |
en |
dc.subject.other |
Shape and size |
en |
dc.subject.other |
Sparse matrices |
en |
dc.subject.other |
Sparse matrix-vector multiplication |
en |
dc.subject.other |
Storage formats |
en |
dc.subject.other |
Knowledge based systems |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
Perfomance models for blocked sparse matrix-vector multiplication kernels |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICPP.2009.21 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICPP.2009.21 |
en |
heal.identifier.secondary |
5362396 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Sparse Matrix-Vector multiplication (SpMV) is a very challenging computational kernel, since its performance depends greatly on both the input matrix and the underlying architecture. The main problem of SpMV is its high demands on memory bandwidth, which cannot yet be abudantly offered from modern commodity architectures. One of the most promising optimization techniques for SpMV is blocking, which can reduce the indexing structures for storing a sparse matrix, and therefore alleviate the pressure to the memory subsystem. However, blocking methods can severely degrade performance if not used properly. In this paper, we study and evaluate a number of representative blocking storage formats and present a performance model that can accurately select the most suitable blocking storage format and the corresponding block shape and size for a specific sparse matrix. Our model considers both the memory and computational part of the kernel, which can be non-negligible when applying blocking, and also assumes an overlapping of memory accesses and computations that modern commodity architectures can offer through hardware prefetching mechanisms. © 2009 IEEE. |
en |
heal.journalName |
Proceedings of the International Conference on Parallel Processing |
en |
dc.identifier.doi |
10.1109/ICPP.2009.21 |
en |
dc.identifier.spage |
356 |
en |
dc.identifier.epage |
364 |
en |