dc.contributor.author |
Theodorakis, S |
en |
dc.contributor.author |
Katsamanis, A |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:46:28Z |
|
dc.date.available |
2014-03-01T02:46:28Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
15206149 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32663 |
|
dc.subject |
Asynchrony |
en |
dc.subject |
HMM+ |
en |
dc.subject |
Integration |
en |
dc.subject |
Product HMM |
en |
dc.subject |
Sign language recognition |
en |
dc.subject.other |
Alternative approach |
en |
dc.subject.other |
Asynchrony |
en |
dc.subject.other |
Classification performance |
en |
dc.subject.other |
Fusion methods |
en |
dc.subject.other |
Fusion model |
en |
dc.subject.other |
HMM+ |
en |
dc.subject.other |
Integration scheme |
en |
dc.subject.other |
Multi-stream |
en |
dc.subject.other |
Multi-stream HMM |
en |
dc.subject.other |
Product HMM |
en |
dc.subject.other |
Shape information |
en |
dc.subject.other |
Shape model |
en |
dc.subject.other |
Sign language |
en |
dc.subject.other |
Sign language recognition |
en |
dc.subject.other |
Sign recognition |
en |
dc.subject.other |
Acoustics |
en |
dc.subject.other |
Linguistics |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.title |
Product-HMMS for automatic sign language recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICASSP.2009.4959905 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICASSP.2009.4959905 |
en |
heal.identifier.secondary |
4959905 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
We address multistream sign language recognition and focus on efficient multistream integration schemes. Alternative approaches are investigated and the application of Product-HMMs (PHMM) is proposed. The PHMM is a variant of the general multistream HMM that also allows for partial asynchrony between the streams. Experiments in classification and isolated sign recognition for the Greek Sign Language using different fusion methods, show that the PHMMs perform the best. Fusing movement and shape information with the PHMMs has increased sign classification performance by 1,2% in comparison to the Parallel HMM fusion model. Isolated sign recognition rate increased by 8,3% over movement only models and by 1,5% over movement-shape models using multistream HMMs. ©2009 IEEE. |
en |
heal.journalName |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
en |
dc.identifier.doi |
10.1109/ICASSP.2009.4959905 |
en |
dc.identifier.spage |
1601 |
en |
dc.identifier.epage |
1604 |
en |