dc.contributor.author |
Kiokes, GC |
en |
dc.contributor.author |
Economakos, G |
en |
dc.contributor.author |
Amditis, A |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T02:46:30Z |
|
dc.date.available |
2014-03-01T02:46:30Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32674 |
|
dc.subject |
FPGA |
en |
dc.subject |
IEEE 802.11p |
en |
dc.subject |
OFDM |
en |
dc.subject |
Reed solomon codes |
en |
dc.subject |
Turbo coding |
en |
dc.subject |
Xilinx system generator |
en |
dc.subject.other |
Ad-hoc communication |
en |
dc.subject.other |
Communication channel |
en |
dc.subject.other |
Electronic system level |
en |
dc.subject.other |
FPGA |
en |
dc.subject.other |
FPGA implementations |
en |
dc.subject.other |
IEEE 802.11s |
en |
dc.subject.other |
IEEE802.11a |
en |
dc.subject.other |
OFDM systems |
en |
dc.subject.other |
P systems |
en |
dc.subject.other |
Public safety |
en |
dc.subject.other |
Recursive systematic convolutional code |
en |
dc.subject.other |
Road transports |
en |
dc.subject.other |
Simulation result |
en |
dc.subject.other |
System models |
en |
dc.subject.other |
System performance evaluation |
en |
dc.subject.other |
Turbo coding |
en |
dc.subject.other |
Vehicle safety |
en |
dc.subject.other |
Vehicular ad hoc networks |
en |
dc.subject.other |
Xilinx system generator |
en |
dc.subject.other |
Automobile electronic equipment |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Convolutional codes |
en |
dc.subject.other |
Field programmable gate arrays (FPGA) |
en |
dc.subject.other |
Intelligent vehicle highway systems |
en |
dc.subject.other |
Model structures |
en |
dc.subject.other |
Orthogonal frequency division multiplexing |
en |
dc.subject.other |
Photolithography |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Systems analysis |
en |
dc.subject.other |
Telecommunication networks |
en |
dc.subject.other |
Telecommunication systems |
en |
dc.subject.other |
Turbo codes |
en |
dc.subject.other |
Ad hoc networks |
en |
dc.title |
Recursive systematic convolutional code simulation for Ofdm - 802.11p system and FPGA implementation using an ESL methodology |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/DSD.2009.196 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/DSD.2009.196 |
en |
heal.identifier.secondary |
5350100 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper presents simulation results demonstrating the performance of OFDM system over vehicular ad-hoc networks, based on IEEE 802.11p specifications, employing turbo coding. The system is focused on vehicle safety applications using ad-hoc communication and networking. IEEE 802.11p defines modifications to IEEE 802.11 to enhance road transport and traffic applications. The standard is based on IEEE 802.11a and intends to support both public safety and licensed private operations over communication channels. The current contribution presents results of system performance evaluation of IEEE 802.11p turbo coding scheme and compares it to the already specified scheme. The turbo coding scheme achieves significant improvement to the performance compared to other techniques. The FEC system model with and without the turbo scheme is later implemented in a Field Programmable Gate Array (FPGA) from Xilinx using an Electronic System Level (ESL) methodology. © 2009 IEEE. |
en |
heal.journalName |
12th Euromicro Conference on Digital System Design: Architectures, Methods and Tools, DSD 2009 |
en |
dc.identifier.doi |
10.1109/DSD.2009.196 |
en |
dc.identifier.spage |
791 |
en |
dc.identifier.epage |
798 |
en |