HEAL DSpace

Relevance feedback for content-based image retrieval using support vector machines and feature selection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:46:30Z
dc.date.available 2014-03-01T02:46:30Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32677
dc.subject Content-based image retrieval en
dc.subject Feature selection en
dc.subject Relevance feedback en
dc.subject Support vector machines en
dc.subject.other Classification tasks en
dc.subject.other Content-based image retrieval en
dc.subject.other Database images en
dc.subject.other Feature selection en
dc.subject.other Image features en
dc.subject.other Multidimensional vectors en
dc.subject.other Negative examples en
dc.subject.other Numerical experiments en
dc.subject.other Relevance feedback en
dc.subject.other Shape information en
dc.subject.other SVM classifiers en
dc.subject.other Backpropagation en
dc.subject.other Classifiers en
dc.subject.other Content based retrieval en
dc.subject.other Feedback en
dc.subject.other Information retrieval en
dc.subject.other Neural networks en
dc.subject.other Support vector machines en
dc.subject.other Vectors en
dc.subject.other Feature extraction en
dc.title Relevance feedback for content-based image retrieval using support vector machines and feature selection en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-04274-4_97 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-04274-4_97 en
heal.publicationDate 2009 en
heal.abstract A relevance feedback (RF) approach for content-based image retrieval (CBIR) is proposed, which is based on Support Vector Machines (SVMs) and uses a feature selection technique to reduce the dimensionality of the image feature space. Specifically, each image is described by a multidimensional vector combining color, texture and shape information. In each RF round, the positive and negative examples provided by the user are used to determine a relatively small number of the most important features for the corresponding classification task, via a feature selection methodology. After the feature selection has been performed, an SVM classifier is trained to distinguish between relevant and irrelevant images according to the preferences of the user, using the restriction of the user examples on the set of selected features. The trained classifier is subsequently used to provide an updated ranking of the database images represented in the space of the selected features. Numerical experiments are presented that demonstrate the merits of the proposed relevance feedback methodology. © 2009 Springer Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-04274-4_97 en
dc.identifier.volume 5768 LNCS en
dc.identifier.issue PART 1 en
dc.identifier.spage 942 en
dc.identifier.epage 951 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής