dc.contributor.author |
Marakakis, A |
en |
dc.contributor.author |
Galatsanos, N |
en |
dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:30Z |
|
dc.date.available |
2014-03-01T02:46:30Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32677 |
|
dc.subject |
Content-based image retrieval |
en |
dc.subject |
Feature selection |
en |
dc.subject |
Relevance feedback |
en |
dc.subject |
Support vector machines |
en |
dc.subject.other |
Classification tasks |
en |
dc.subject.other |
Content-based image retrieval |
en |
dc.subject.other |
Database images |
en |
dc.subject.other |
Feature selection |
en |
dc.subject.other |
Image features |
en |
dc.subject.other |
Multidimensional vectors |
en |
dc.subject.other |
Negative examples |
en |
dc.subject.other |
Numerical experiments |
en |
dc.subject.other |
Relevance feedback |
en |
dc.subject.other |
Shape information |
en |
dc.subject.other |
SVM classifiers |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Classifiers |
en |
dc.subject.other |
Content based retrieval |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Information retrieval |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Support vector machines |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Feature extraction |
en |
dc.title |
Relevance feedback for content-based image retrieval using support vector machines and feature selection |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-04274-4_97 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-04274-4_97 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A relevance feedback (RF) approach for content-based image retrieval (CBIR) is proposed, which is based on Support Vector Machines (SVMs) and uses a feature selection technique to reduce the dimensionality of the image feature space. Specifically, each image is described by a multidimensional vector combining color, texture and shape information. In each RF round, the positive and negative examples provided by the user are used to determine a relatively small number of the most important features for the corresponding classification task, via a feature selection methodology. After the feature selection has been performed, an SVM classifier is trained to distinguish between relevant and irrelevant images according to the preferences of the user, using the restriction of the user examples on the set of selected features. The trained classifier is subsequently used to provide an updated ranking of the database images represented in the space of the selected features. Numerical experiments are presented that demonstrate the merits of the proposed relevance feedback methodology. © 2009 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-04274-4_97 |
en |
dc.identifier.volume |
5768 LNCS |
en |
dc.identifier.issue |
PART 1 |
en |
dc.identifier.spage |
942 |
en |
dc.identifier.epage |
951 |
en |