dc.contributor.author |
Simou, N |
en |
dc.contributor.author |
Athanasiadis, T |
en |
dc.contributor.author |
Kollias, S |
en |
dc.contributor.author |
Stamou, G |
en |
dc.date.accessioned |
2014-03-01T02:46:30Z |
|
dc.date.available |
2014-03-01T02:46:30Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
1210-0552 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32685 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-71949109606&partnerID=40&md5=6e0b8097c2cd7efd5e269fcfcc2cee99 |
en |
dc.subject |
Fuzzy description logics |
en |
dc.subject |
Semantic adaptation |
en |
dc.subject |
Semantic segmentation |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Neurosciences |
en |
dc.subject.other |
Confidence levels |
en |
dc.subject.other |
Domain-specific knowledge |
en |
dc.subject.other |
Fine images |
en |
dc.subject.other |
Fuzzy description logic |
en |
dc.subject.other |
Fuzzy reasoning |
en |
dc.subject.other |
Machine learning techniques |
en |
dc.subject.other |
Multi-media analysis |
en |
dc.subject.other |
Multimedia contents |
en |
dc.subject.other |
Network classifiers |
en |
dc.subject.other |
Neural network classifier |
en |
dc.subject.other |
Research areas |
en |
dc.subject.other |
Semantic adaptation |
en |
dc.subject.other |
Semantic analysis |
en |
dc.subject.other |
Semantic segmentation |
en |
dc.subject.other |
Classifiers |
en |
dc.subject.other |
Data description |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Knowledge based systems |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Semantic adaptation of neural network classifiers in image segmentation |
en |
heal.type |
conferenceItem |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Semantic analysis of multimedia content is an ongoing research area that has gained a lot of attention over the last few years. Additionally, machine learning techniques are widely used for multimedia analysis with great success. This work presents a combined approach aiming at the semantic adaptation of neural network classifiers in a multimedia framework. Our proposal is based on a fuzzy reasoning engine which is able to evaluate the outputs and the confidence levels of the neural network classifier, using a domain specific knowledge base. The results obtained by the fuzzy reasoning engine arc used as input for the adaptation of the network classifier, further increasing its ability to provide accurate classification of the specific content. The improved performance of the adapted neural network is used by a semantic segmentation algorithm that merges neighbouring regions satisfying certain criteria. In that way, fine image segmentation and classification are established. © ICS AS CR 2009. |
en |
heal.publisher |
ACAD SCIENCES CZECH REPUBLIC, INST COMPUTER SCIENCE |
en |
heal.journalName |
Neural Network World |
en |
dc.identifier.isi |
ISI:000271688500012 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
561 |
en |
dc.identifier.epage |
579 |
en |