HEAL DSpace

The impact of social ignorance on weighted congestion games

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Fotakis, D en
dc.contributor.author Gkatzelis, V en
dc.contributor.author Kaporis, AC en
dc.contributor.author Spirakis, PG en
dc.date.accessioned 2014-03-01T02:46:33Z
dc.date.available 2014-03-01T02:46:33Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32707
dc.subject Congestion Game en
dc.subject Convergence Rate en
dc.subject Independence Number en
dc.subject Potential Function en
dc.subject Price of Anarchy en
dc.subject Price of Stability en
dc.subject Nash Equilibria en
dc.subject.other Congestion Games en
dc.subject.other Convergence rates en
dc.subject.other Independence number en
dc.subject.other Linear congestion games en
dc.subject.other Nash dynamics en
dc.subject.other Polynomial-time en
dc.subject.other Potential function en
dc.subject.other Price of anarchy en
dc.subject.other Price of Stability en
dc.subject.other Pure Nash equilibrium en
dc.subject.other Social graphs en
dc.subject.other Strategy selection en
dc.subject.other Internet en
dc.subject.other Polynomial approximation en
dc.subject.other Wine en
dc.subject.other Congestion control (communication) en
dc.title The impact of social ignorance on weighted congestion games en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-10841-9_29 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-10841-9_29 en
heal.publicationDate 2009 en
heal.abstract We consider weighted linear congestion games, and investigate how social ignorance, namely lack of information about the presence of some players, affects the inefficiency of pure Nash equilibria (PNE) and the convergence rate of the ε-Nash dynamics. To this end, we adopt the model of graphical linear congestion games with weighted players, where the individual cost and the strategy selection of each player only depends on his neighboring players in the social graph. We show that such games admit a potential function, and thus a PNE. Our main result is that the impact of social ignorance on the Price of Anarchy (PoA) and the Price of Stability (PoS) is naturally quantified by the independence number α(G) of the social graph G. In particular, we show that the PoA grows roughly as α(G)(α(G)+2), which is essentially tight as long as α(G) does not exceed half the number of players, and that the PoS lies between α(G) and 2α(G). Moreover, we show that the ε-Nash dynamics reaches an α(G)(α(G)+2)-approximate configuration in polynomial time that does not directly depend on the social graph. For unweighted graphical linear games with symmetric strategies, we show that the ε-Nash dynamics reaches an ε-approximate PNE in polynomial time that exceeds the corresponding time for symmetric linear games by a factor at most as large as the number of players. © 2009 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-10841-9_29 en
dc.identifier.volume 5929 LNCS en
dc.identifier.spage 316 en
dc.identifier.epage 327 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record