dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T02:46:33Z |
|
dc.date.available |
2014-03-01T02:46:33Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32708 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Elliptic partial differential equations |
en |
dc.subject |
Meshless method |
en |
dc.subject |
Radial basis functions |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Analog equation |
en |
dc.subject.other |
Analog equation method |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Approximate solution |
en |
dc.subject.other |
Coefficient matrix |
en |
dc.subject.other |
Elliptic partial differential equation |
en |
dc.subject.other |
Elliptic partial differential equations |
en |
dc.subject.other |
Elliptic PDEs |
en |
dc.subject.other |
Expansion coefficients |
en |
dc.subject.other |
Fictitious sources |
en |
dc.subject.other |
Integration constants |
en |
dc.subject.other |
Mesh-less methods |
en |
dc.subject.other |
Meshfree |
en |
dc.subject.other |
Meshless |
en |
dc.subject.other |
Meshless method |
en |
dc.subject.other |
Multiquadric radial basis function |
en |
dc.subject.other |
Multiquadrics |
en |
dc.subject.other |
Nodal points |
en |
dc.subject.other |
Optimal values |
en |
dc.subject.other |
Radial basis functions |
en |
dc.subject.other |
RBF collocation method |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
Shape parameters |
en |
dc.subject.other |
System of linear equations |
en |
dc.subject.other |
Aircraft engines |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Partial differential equations |
en |
dc.title |
The meshless analog equation method: I. Solution of elliptic partial differential equations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/s00419-008-0294-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-008-0294-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A new purely meshless method for solving elliptic partial differential equations (PDEs) is presented. The method is based on the principle of the analog equation of Katsikadelis, hence its name meshless analog equation method (MAEM), which converts the original equation into a simple solvable substitute one of the same order under a fictitious source. The fictitious source is represented by multiquadric radial basis functions (MQ-RBFs). The integration of the analog equation yields new RBFs, which are used to approximate the sought solution. Then inserting the approximate solution into the PDE and boundary conditions (BCs) and collocating at the mesh-free nodal points results in a system of linear equations, which permit the evaluation of the expansion coefficients of the RBFs series. The method exhibits key advantages over other RBF collocation methods as it is highly accurate and the coefficient matrix of the resulting linear equations is always invertible. The accuracy is achieved using optimal values for the shape parameters and the centers of the multiquadrics as well as of the integration constants of the analog equation, which are obtained by minimizing the functional that produces the PDE. Without restricting its generality, the method is illustrated by applying it to the general second order 2D and 3D elliptic PDEs. The studied examples demonstrate the efficiency and high accuracy of the developed method. © 2008 Springer-Verlag. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-008-0294-6 |
en |
dc.identifier.isi |
ISI:000266260400008 |
en |
dc.identifier.volume |
79 |
en |
dc.identifier.issue |
6-7 |
en |
dc.identifier.spage |
557 |
en |
dc.identifier.epage |
578 |
en |