HEAL DSpace

The meshless analog equation method: I. Solution of elliptic partial differential equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T02:46:33Z
dc.date.available 2014-03-01T02:46:33Z
dc.date.issued 2009 en
dc.identifier.issn 0939-1533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32708
dc.subject Analog equation method en
dc.subject Elliptic partial differential equations en
dc.subject Meshless method en
dc.subject Radial basis functions en
dc.subject.classification Mechanics en
dc.subject.other Analog equation en
dc.subject.other Analog equation method en
dc.subject.other Analog equation methods en
dc.subject.other Approximate solution en
dc.subject.other Coefficient matrix en
dc.subject.other Elliptic partial differential equation en
dc.subject.other Elliptic partial differential equations en
dc.subject.other Elliptic PDEs en
dc.subject.other Expansion coefficients en
dc.subject.other Fictitious sources en
dc.subject.other Integration constants en
dc.subject.other Mesh-less methods en
dc.subject.other Meshfree en
dc.subject.other Meshless en
dc.subject.other Meshless method en
dc.subject.other Multiquadric radial basis function en
dc.subject.other Multiquadrics en
dc.subject.other Nodal points en
dc.subject.other Optimal values en
dc.subject.other Radial basis functions en
dc.subject.other RBF collocation method en
dc.subject.other Second orders en
dc.subject.other Shape parameters en
dc.subject.other System of linear equations en
dc.subject.other Aircraft engines en
dc.subject.other Boundary conditions en
dc.subject.other Computational fluid dynamics en
dc.subject.other Geometry en
dc.subject.other Image segmentation en
dc.subject.other Radial basis function networks en
dc.subject.other Three dimensional en
dc.subject.other Partial differential equations en
dc.title The meshless analog equation method: I. Solution of elliptic partial differential equations en
heal.type conferenceItem en
heal.identifier.primary 10.1007/s00419-008-0294-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00419-008-0294-6 en
heal.language English en
heal.publicationDate 2009 en
heal.abstract A new purely meshless method for solving elliptic partial differential equations (PDEs) is presented. The method is based on the principle of the analog equation of Katsikadelis, hence its name meshless analog equation method (MAEM), which converts the original equation into a simple solvable substitute one of the same order under a fictitious source. The fictitious source is represented by multiquadric radial basis functions (MQ-RBFs). The integration of the analog equation yields new RBFs, which are used to approximate the sought solution. Then inserting the approximate solution into the PDE and boundary conditions (BCs) and collocating at the mesh-free nodal points results in a system of linear equations, which permit the evaluation of the expansion coefficients of the RBFs series. The method exhibits key advantages over other RBF collocation methods as it is highly accurate and the coefficient matrix of the resulting linear equations is always invertible. The accuracy is achieved using optimal values for the shape parameters and the centers of the multiquadrics as well as of the integration constants of the analog equation, which are obtained by minimizing the functional that produces the PDE. Without restricting its generality, the method is illustrated by applying it to the general second order 2D and 3D elliptic PDEs. The studied examples demonstrate the efficiency and high accuracy of the developed method. © 2008 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/s00419-008-0294-6 en
dc.identifier.isi ISI:000266260400008 en
dc.identifier.volume 79 en
dc.identifier.issue 6-7 en
dc.identifier.spage 557 en
dc.identifier.epage 578 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής