dc.contributor.author |
Roussos, A |
en |
dc.contributor.author |
Katsamanis, A |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:46:33Z |
|
dc.date.available |
2014-03-01T02:46:33Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
15224880 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32714 |
|
dc.subject |
Active Appearance Model |
en |
dc.subject |
Automatic Detection |
en |
dc.subject |
bayesian framework |
en |
dc.subject |
Perforation |
en |
dc.subject |
Prior Information |
en |
dc.subject |
Shape Priors |
en |
dc.subject |
Speckle Noise |
en |
dc.subject |
Speech Production |
en |
dc.subject |
Ultrasound |
en |
dc.subject |
Ultrasound Imaging |
en |
dc.subject |
Variational Models |
en |
dc.subject |
X Rays |
en |
dc.subject |
Optical Flow |
en |
dc.subject.other |
Active appearance models |
en |
dc.subject.other |
Appearance modeling |
en |
dc.subject.other |
Experimental evaluation |
en |
dc.subject.other |
Human speech |
en |
dc.subject.other |
Novel methods |
en |
dc.subject.other |
Shape priors |
en |
dc.subject.other |
Tracking techniques |
en |
dc.subject.other |
Ultrasound images |
en |
dc.subject.other |
Ultrasound imaging |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Ultrasonic applications |
en |
dc.subject.other |
Ultrasonics |
en |
dc.subject.other |
Tracking (position) |
en |
dc.title |
Tongue tracking in ultrasound images with active appearance models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2009.5414520 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2009.5414520 |
en |
heal.identifier.secondary |
5414520 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Tongue Ultrasound imaging is widely used for human speech production analysis and modeling. In this paper, we propose a novel method to automatically detect and track the tongue contour in Ultrasound (US) videos. Our method is built on a variant of Active Appearance Modeling. It incorporates shape prior information and can estimate the entire tongue contour robustly and accurately in a sequence of US frames. Experimental evaluation demonstrates the effectiveness of our approach and its improved performance compared to previously proposed tongue tracking techniques. ©2009 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Image Processing, ICIP |
en |
dc.identifier.doi |
10.1109/ICIP.2009.5414520 |
en |
dc.identifier.spage |
1733 |
en |
dc.identifier.epage |
1736 |
en |