HEAL DSpace

Top-k dominant Web services under multi-criteria matching

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Skoutas, D en
dc.contributor.author Sacharidis, D en
dc.contributor.author Simitsis, A en
dc.contributor.author Kantere, V en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T02:46:33Z
dc.date.available 2014-03-01T02:46:33Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32715
dc.subject Efficient Algorithm en
dc.subject Experimental Evaluation en
dc.subject Inference Rule en
dc.subject Information Loss en
dc.subject Information Retrieval en
dc.subject Similarity Metric en
dc.subject Web of Data en
dc.subject Web Search Engine en
dc.subject Web Service en
dc.subject.other Efficient algorithm en
dc.subject.other Existing method en
dc.subject.other Experimental evaluation en
dc.subject.other Inference rules en
dc.subject.other Information loss en
dc.subject.other Matching criterion en
dc.subject.other Matching score en
dc.subject.other Multi-criteria en
dc.subject.other Objective measure en
dc.subject.other Service requests en
dc.subject.other Similarity metrics en
dc.subject.other Web search engines en
dc.subject.other Worst case scenario en
dc.subject.other Algorithms en
dc.subject.other Database systems en
dc.subject.other Information retrieval en
dc.subject.other Information services en
dc.subject.other Search engines en
dc.subject.other Web services en
dc.subject.other Parameter estimation en
dc.title Top-k dominant Web services under multi-criteria matching en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1516360.1516463 en
heal.identifier.secondary http://dx.doi.org/10.1145/1516360.1516463 en
heal.publicationDate 2009 en
heal.abstract As we move from a Web of data to a Web of services, enhancing the capabilities of the current Web search engines with effective and efficient techniques for Web services retrieval and selection becomes an important issue. Traditionally, the relevance of a Web service advertisement to a service request is determined by computing an overall score that aggregates individual matching scores among the various parameters in their descriptions. Two drawbacks characterize such approaches. First, there is no single matching criterion that is optimal for determining the similarity between parameters. Instead, there are numerous approaches ranging from using Information Retrieval similarity metrics up to semantic logic-based inference rules. Second, the reduction of individual scores to an overall similarity leads to significant information loss. Since there is no consensus on how to weight these scores, existing methods are typically pessimistic, adopting a worst-case scenario. As a consequence, several services, e.g., those having a single unrelated parameter, can be excluded from the result set, even though they are potentially good alternatives. In this work, we present a methodology that overcomes both deficiencies. Given a request, we introduce an objective measure that assigns a dominance score to each advertised Web service. This score takes into consideration all the available criteria for each parameter in the request. We investigate three distinct definitions of dominance score, and we devise efficient algorithms that retrieve the top-k most dominant Web services in each case. Extensive experimental evaluation on real requests and relevance sets, as well as on synthetically generated scenarios, demonstrates both the effectiveness of the proposed technique and the efficiency of the algorithms. Copyright 2009 ACM. en
heal.journalName Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, EDBT'09 en
dc.identifier.doi 10.1145/1516360.1516463 en
dc.identifier.spage 898 en
dc.identifier.epage 909 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής