dc.contributor.author |
Ntalianis, K |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Tsapatsoulis, N |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.date.accessioned |
2014-03-01T02:46:34Z |
|
dc.date.available |
2014-03-01T02:46:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32720 |
|
dc.subject |
Automatic annotation of multimedia |
en |
dc.subject |
Clickthrough data |
en |
dc.subject |
Image retrieval |
en |
dc.subject.other |
Automatic annotation |
en |
dc.subject.other |
Clickthrough data |
en |
dc.subject.other |
Content annotation |
en |
dc.subject.other |
Controlled experiment |
en |
dc.subject.other |
Low-level features |
en |
dc.subject.other |
Manual annotation |
en |
dc.subject.other |
Multimedia contents |
en |
dc.subject.other |
Multimedia files |
en |
dc.subject.other |
Theoretical result |
en |
dc.subject.other |
Unsupervised clustering |
en |
dc.subject.other |
User-dependent |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Search engines |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Unsupervised clustering of clickthrough data for automatic annotation of multimedia content |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-04277-5_90 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-04277-5_90 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Current low-level feature-based CBIR methods do not provide meaningful results on non-annotated content. On the other hand manual annotation is both time/money consuming and user-dependent. To address these problems in this paper we present an automatic annotation approach by clustering, in an unsupervised way, clickthrough data of search engines. In particular the query-log and the log of links the users clicked on are analyzed in order to extract and assign keywords to selected content. Content annotation is also accelerated by a carousel-like methodology. The proposed approach is feasible even for large sets of queries and features and theoretical results are verified in a controlled experiment, which shows that the method can effectively annotate multimedia files. © 2009 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-04277-5_90 |
en |
dc.identifier.volume |
5769 LNCS |
en |
dc.identifier.issue |
PART 2 |
en |
dc.identifier.spage |
895 |
en |
dc.identifier.epage |
904 |
en |