HEAL DSpace

Unsupervised clustering of clickthrough data for automatic annotation of multimedia content

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ntalianis, K en
dc.contributor.author Doulamis, A en
dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Doulamis, N en
dc.date.accessioned 2014-03-01T02:46:34Z
dc.date.available 2014-03-01T02:46:34Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32720
dc.subject Automatic annotation of multimedia en
dc.subject Clickthrough data en
dc.subject Image retrieval en
dc.subject.other Automatic annotation en
dc.subject.other Clickthrough data en
dc.subject.other Content annotation en
dc.subject.other Controlled experiment en
dc.subject.other Low-level features en
dc.subject.other Manual annotation en
dc.subject.other Multimedia contents en
dc.subject.other Multimedia files en
dc.subject.other Theoretical result en
dc.subject.other Unsupervised clustering en
dc.subject.other User-dependent en
dc.subject.other Backpropagation en
dc.subject.other Cluster analysis en
dc.subject.other Image retrieval en
dc.subject.other Multimedia systems en
dc.subject.other Search engines en
dc.subject.other Neural networks en
dc.title Unsupervised clustering of clickthrough data for automatic annotation of multimedia content en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-04277-5_90 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-04277-5_90 en
heal.publicationDate 2009 en
heal.abstract Current low-level feature-based CBIR methods do not provide meaningful results on non-annotated content. On the other hand manual annotation is both time/money consuming and user-dependent. To address these problems in this paper we present an automatic annotation approach by clustering, in an unsupervised way, clickthrough data of search engines. In particular the query-log and the log of links the users clicked on are analyzed in order to extract and assign keywords to selected content. Content annotation is also accelerated by a carousel-like methodology. The proposed approach is feasible even for large sets of queries and features and theoretical results are verified in a controlled experiment, which shows that the method can effectively annotate multimedia files. © 2009 Springer Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-04277-5_90 en
dc.identifier.volume 5769 LNCS en
dc.identifier.issue PART 2 en
dc.identifier.spage 895 en
dc.identifier.epage 904 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής