dc.contributor.author |
Athanasiou, S |
en |
dc.contributor.author |
Georgantas, P |
en |
dc.contributor.author |
Gerakakis, G |
en |
dc.contributor.author |
Pfoser, D |
en |
dc.date.accessioned |
2014-03-01T02:46:34Z |
|
dc.date.available |
2014-03-01T02:46:34Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32722 |
|
dc.subject |
FCD |
en |
dc.subject |
Map matching |
en |
dc.subject |
Tracking |
en |
dc.subject |
Wireless positioning |
en |
dc.subject.other |
802.11 networks |
en |
dc.subject.other |
Experimental evaluation |
en |
dc.subject.other |
FCD |
en |
dc.subject.other |
Floating car data |
en |
dc.subject.other |
Geographic areas |
en |
dc.subject.other |
GPS data |
en |
dc.subject.other |
GPS tracking |
en |
dc.subject.other |
Map matching |
en |
dc.subject.other |
Position estimates |
en |
dc.subject.other |
Road network |
en |
dc.subject.other |
Speed profile |
en |
dc.subject.other |
Tools and techniques |
en |
dc.subject.other |
Tracking |
en |
dc.subject.other |
Tracking data |
en |
dc.subject.other |
Travel time |
en |
dc.subject.other |
Wireless positioning |
en |
dc.subject.other |
Wireless positioning systems |
en |
dc.subject.other |
Global positioning system |
en |
dc.subject.other |
Motor transportation |
en |
dc.subject.other |
Prestressing |
en |
dc.subject.other |
Wireless networks |
en |
dc.subject.other |
Wireless telecommunication systems |
en |
dc.title |
Utilizing wireless positioning as a tracking data source |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-02982-0_13 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-02982-0_13 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Tracking data has become a valuable resource for establishing speed profiles for road networks, i.e., travel-time maps. While methods to derive travel time maps from GPS tracking data sources, such as floating car data (FCD), are available, the critical aspect in this process is to obtain amounts of data that fully cover all geographic areas of interest. In this work, we introduce Wireless Positioning Systems (WPS) based on 802.11 networks (WiFi), as an additional technology to extend the number of available tracking data sources. Featuring increased ubiquity but lower accuracy than GPS, this technology has the potential to produce travel time maps comparable to GPS data sources. Specifically, we adapt and apply readily available algorithms for (a) WPS (centroid and fingerprinting) to derive position estimates, and (b) map matching to derive travel times. Further, we introduce map matching as a means to improve WPS accuracy. We present an extensive experimental evaluation on real data comparing our approach to GPS-based techniques. We demonstrate that the exploitation of WPS tracking data sources is feasible with existing tools and techniques. © 2009 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-02982-0_13 |
en |
dc.identifier.volume |
5644 LNCS |
en |
dc.identifier.spage |
171 |
en |
dc.identifier.epage |
188 |
en |