HEAL DSpace

Window update patterns in stream operators

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patroumpas, K en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T02:46:35Z
dc.date.available 2014-03-01T02:46:35Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32729
dc.subject Continuous Query en
dc.subject Data Stream en
dc.subject Design and Implementation en
dc.subject Sliding Window en
dc.subject Stream Processing en
dc.subject.other Arrival rates en
dc.subject.other Continuous queries en
dc.subject.other Data sets en
dc.subject.other Data stream en
dc.subject.other Incremental evaluation en
dc.subject.other Sliding Window en
dc.subject.other Stream processing en
dc.subject.other Update patterns en
dc.subject.other Window Size en
dc.subject.other Information systems en
dc.subject.other Machine design en
dc.subject.other Windows en
dc.title Window update patterns in stream operators en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-03973-7_10 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-03973-7_10 en
heal.publicationDate 2009 en
heal.abstract Continuous queries applied over nonterminating data streams usually specify windows in order to obtain an evolving -yet restricted- set of tuples and thus provide timely results. Among other typical variants, sliding windows are mostly employed in stream processing engines and several advanced techniques have been suggested for their incremental evaluation. In this paper, we set out to study the existence of monotonic-related semantics in windowing constructs towards a more efficient maintenance of their changing contents. We investigate update patterns observed in common window variants as well as their impact on windowed adaptations of typical operators (like selection, join or aggregation), offering more insight towards design and implementation of stream processing mechanisms. Finally, to demonstrate its significance, this framework is validated for several windowed operations against streaming datasets with simulations at diverse arrival rates and window sizes. © 2009 Springer. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-03973-7_10 en
dc.identifier.volume 5739 LNCS en
dc.identifier.spage 118 en
dc.identifier.epage 132 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής