HEAL DSpace

A framework for enabling fault tolerance in reconfigurable architectures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Siozios, K en
dc.contributor.author Soudris, D en
dc.contributor.author Pnevmatikatos, D en
dc.date.accessioned 2014-03-01T02:46:36Z
dc.date.available 2014-03-01T02:46:36Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32743
dc.subject Fault Tolerant en
dc.subject reconfigurable architecture en
dc.subject Safety Critical System en
dc.subject Single Event Upset en
dc.subject.other Hardware elements en
dc.subject.other Performance degradation en
dc.subject.other Power overhead en
dc.subject.other Reconfigurable architecture en
dc.subject.other Safety critical systems en
dc.subject.other Single event upsets en
dc.subject.other Target architectures en
dc.subject.other Cavity resonators en
dc.subject.other Fault tolerance en
dc.subject.other Quality assurance en
dc.title A framework for enabling fault tolerance in reconfigurable architectures en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-12133-3_24 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-12133-3_24 en
heal.publicationDate 2010 en
heal.abstract Fault tolerance is a pre-request not only for safety critical systems, but almost for the majority of applications. However, the additional hardware elements impose performance degradation. In this paper we propose a software-supported methodology for protecting reconfigurable architectures against Single Event Upsets (SEUs), even if the target device is not aware about this feature. This methodology initially predicts areas of the target architecture where faults are most possible to occur and then inserts selectively redundancy only there. Based on experimental results, we show that our proposed selectively fault-tolerance results to a better tradeoff between desired level of reliability and area, delay, power overhead. © 2010 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-12133-3_24 en
dc.identifier.volume 5992 LNCS en
dc.identifier.spage 257 en
dc.identifier.epage 268 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής