HEAL DSpace

A fuzzy cellular automata modeling approach - Accessing urban growth dynamics in linguistic terms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantelas, LA en
dc.contributor.author Hatzichristos, T en
dc.contributor.author Prastacos, P en
dc.date.accessioned 2014-03-01T02:46:36Z
dc.date.available 2014-03-01T02:46:36Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32744
dc.subject Cellular Automata en
dc.subject Fuzzy Logic en
dc.subject Mesogia Athens en
dc.subject Rule-based Modeling en
dc.subject Urban Growth en
dc.subject.other Data requirements en
dc.subject.other Fuzzy cellular automata en
dc.subject.other Information flows en
dc.subject.other Input variables en
dc.subject.other Knowledge base en
dc.subject.other Linguistic terms en
dc.subject.other Methodological frameworks en
dc.subject.other Multi-level en
dc.subject.other Parallel connections en
dc.subject.other Rule based en
dc.subject.other Rule-based Modeling en
dc.subject.other Single variable en
dc.subject.other Urban growth en
dc.subject.other Urban modeling en
dc.subject.other Automata theory en
dc.subject.other Cellular automata en
dc.subject.other Electric connectors en
dc.subject.other Fuzzy systems en
dc.subject.other Information management en
dc.subject.other Knowledge based systems en
dc.subject.other Linguistics en
dc.subject.other Pattern recognition systems en
dc.subject.other Robots en
dc.subject.other Translation (languages) en
dc.subject.other Fuzzy logic en
dc.title A fuzzy cellular automata modeling approach - Accessing urban growth dynamics in linguistic terms en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-12156-2-11 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-12156-2-11 en
heal.publicationDate 2010 en
heal.abstract This paper presents a methodological framework for urban modeling which accesses the multi-level urban growth dynamics and expresses them in linguistic terms. In this approach a set of parallel fuzzy systems is used, each one of which focuses on different aspects of the urban growth dynamics, different drivers or restriction of development and concludes over the suitability for urbanization for each area. As a result the systems' structure and connection merge the input variables into a single variable providing an information flow familiar to the human conceptualization of the phenomenon. At the same time, the structure does not pose severe data requirements while the utilization of parallel connection between fuzzy systems allows the user to add or remove variables without altering the ways in which other variables affect the knowledge base. Following, a fuzzy system that incorporates cellular automata techniques simulates the horizontal and vertical urban growth. The proposed model is applied and tested in the Mesogeia area in the Attica basin (Athens) and fits reality in average by 76% (LeeShalle index) while the average cell error is 19%. Nevertheless, the benefits obtained in the herein presented approach lie in the information management and representation. © 2010 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-12156-2-11 en
dc.identifier.volume 6016 LNCS en
dc.identifier.issue PART 1 en
dc.identifier.spage 140 en
dc.identifier.epage 151 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής