dc.contributor.author |
Bozas, K |
en |
dc.contributor.author |
Dimitriadis, SI |
en |
dc.contributor.author |
Laskaris, NA |
en |
dc.contributor.author |
Tzelepi, A |
en |
dc.date.accessioned |
2014-03-01T02:46:39Z |
|
dc.date.available |
2014-03-01T02:46:39Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32757 |
|
dc.subject |
Brain Activation |
en |
dc.subject |
Brain Imaging |
en |
dc.subject |
Complex Network |
en |
dc.subject |
Functional Connectivity |
en |
dc.subject |
Self Organization |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Brain activation |
en |
dc.subject.other |
Brain activity |
en |
dc.subject.other |
Brain imaging |
en |
dc.subject.other |
Brain regions |
en |
dc.subject.other |
Complex network analysis |
en |
dc.subject.other |
EOG signal |
en |
dc.subject.other |
Experimental control |
en |
dc.subject.other |
Functional connectivity |
en |
dc.subject.other |
Go/no-go |
en |
dc.subject.other |
Ocular movements |
en |
dc.subject.other |
Self-organizing neural network |
en |
dc.subject.other |
Single-trial analysis |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Electric network analysis |
en |
dc.subject.other |
Eye movements |
en |
dc.subject.other |
Linear transformations |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
A novel single-trial analysis scheme for characterizing the presaccadic brain activity based on a SON representation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-15822-3_44 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-15822-3_44 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We introduce a tactic for single-trial (ST) analysis that incorporates, in the study of saccades, the experimental control of a behavioural variable within the standard paradigm of a repeated execution of a single task. The ubiquitous ST-variability in brain imaging recordings is turned, here, to an additional informative dimension that can be exploited to gain further understanding of brain's function mechanisms. Our approach builds over a self-organizing neural network (SON) that can efficiently learn and parameterise the variability in the patterning of electro-oculographic (EOG) signals. In a second stage, the STs of encephalographic activity are organized accordingly and the observed variations in the EOG signals are associated with specific brain activations. Finally, complex network analysis is employed as a means to characterize the ST-variability based on modes of functional connectivity. Using EEG data from a Go/No-Go paradigm, we demonstrate that the spontaneous variations in the execution of a saccade can open a window on the role of different brain regions for ocular movements. © 2010 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-15822-3_44 |
en |
dc.identifier.volume |
6353 LNCS |
en |
dc.identifier.issue |
PART 2 |
en |
dc.identifier.spage |
362 |
en |
dc.identifier.epage |
371 |
en |