HEAL DSpace

A novel single-trial analysis scheme for characterizing the presaccadic brain activity based on a SON representation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bozas, K en
dc.contributor.author Dimitriadis, SI en
dc.contributor.author Laskaris, NA en
dc.contributor.author Tzelepi, A en
dc.date.accessioned 2014-03-01T02:46:39Z
dc.date.available 2014-03-01T02:46:39Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32757
dc.subject Brain Activation en
dc.subject Brain Imaging en
dc.subject Complex Network en
dc.subject Functional Connectivity en
dc.subject Self Organization en
dc.subject Neural Network en
dc.subject.other Brain activation en
dc.subject.other Brain activity en
dc.subject.other Brain imaging en
dc.subject.other Brain regions en
dc.subject.other Complex network analysis en
dc.subject.other EOG signal en
dc.subject.other Experimental control en
dc.subject.other Functional connectivity en
dc.subject.other Go/no-go en
dc.subject.other Ocular movements en
dc.subject.other Self-organizing neural network en
dc.subject.other Single-trial analysis en
dc.subject.other Brain en
dc.subject.other Electric network analysis en
dc.subject.other Eye movements en
dc.subject.other Linear transformations en
dc.subject.other Neural networks en
dc.title A novel single-trial analysis scheme for characterizing the presaccadic brain activity based on a SON representation en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-15822-3_44 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-15822-3_44 en
heal.publicationDate 2010 en
heal.abstract We introduce a tactic for single-trial (ST) analysis that incorporates, in the study of saccades, the experimental control of a behavioural variable within the standard paradigm of a repeated execution of a single task. The ubiquitous ST-variability in brain imaging recordings is turned, here, to an additional informative dimension that can be exploited to gain further understanding of brain's function mechanisms. Our approach builds over a self-organizing neural network (SON) that can efficiently learn and parameterise the variability in the patterning of electro-oculographic (EOG) signals. In a second stage, the STs of encephalographic activity are organized accordingly and the observed variations in the EOG signals are associated with specific brain activations. Finally, complex network analysis is employed as a means to characterize the ST-variability based on modes of functional connectivity. Using EEG data from a Go/No-Go paradigm, we demonstrate that the spontaneous variations in the execution of a saccade can open a window on the role of different brain regions for ocular movements. © 2010 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-15822-3_44 en
dc.identifier.volume 6353 LNCS en
dc.identifier.issue PART 2 en
dc.identifier.spage 362 en
dc.identifier.epage 371 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής