dc.contributor.author |
Huang, E |
en |
dc.contributor.author |
Antoniou, C |
en |
dc.contributor.author |
Lopes, J |
en |
dc.contributor.author |
Wen, Y |
en |
dc.contributor.author |
Ben-Akiva, M |
en |
dc.date.accessioned |
2014-03-01T02:46:40Z |
|
dc.date.available |
2014-03-01T02:46:40Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32767 |
|
dc.subject |
Case Study |
en |
dc.subject |
Dynamic Traffic Assignment |
en |
dc.subject |
extended kalman filter |
en |
dc.subject |
Stochastic Gradient Descent |
en |
dc.subject |
Real Time |
en |
dc.subject |
Stochastic Gradient |
en |
dc.subject.other |
Computational time |
en |
dc.subject.other |
Dynamic traffic assignments |
en |
dc.subject.other |
Gradient calculations |
en |
dc.subject.other |
Network information |
en |
dc.subject.other |
On-line calibration |
en |
dc.subject.other |
Portugal |
en |
dc.subject.other |
Real-time models |
en |
dc.subject.other |
Route guidance |
en |
dc.subject.other |
Speed-ups |
en |
dc.subject.other |
Stochastic gradient approximations |
en |
dc.subject.other |
Stochastic gradient descent |
en |
dc.subject.other |
Calibration |
en |
dc.subject.other |
Differential thermal analysis |
en |
dc.subject.other |
Intelligent systems |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Distributed computer systems |
en |
dc.title |
Accelerated on-line calibration of dynamic traffic assignment using distributed stochastic gradient approximation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ITSC.2010.5625109 |
en |
heal.identifier.secondary |
5625109 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ITSC.2010.5625109 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Dynamic Traffic Assignment (DTA) system [Ben-Akiva et al., 1991] [Mahmassani, 2001] benefits travelers by providing accurate estimate of current traf-fic conditions, consistent anticipatory network information as well as reliable route guidance. Over the years, two types of model adjustment schemes have been studied - DTA off-line calibration [Balakrishna, 2006] [Toledo et al., 2003] [van der Zijpp, 1997] and DTA online calibration [Antoniou et al., 2007] [Wang et al., 2007] [Ashok and Ben-Akiva, 2000]. The on-line calibration of DTA system allows real-time model self-corrections and has proven to be a useful complement to off-line calibration. In this paper, we explore distributed gradient calculations for the speed-up of on-line calibration of Dynamic Traffic Assignment (DTA) systems. Extended Kalman Filter (EKF) and Stochastic Gradient Descent (GD) are examined and their corresponding distributed versions (Para-EKF and Para-GD) are proposed. A case study is performed on a 25-km expressway in Western Portugal. We empirically show that the application of distributed gradient calculation significantly reduce the computational time of online calibration and thus provide attractive alternatives for speed-critical real-time DTA systems. ©2010 IEEE. |
en |
heal.journalName |
IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC |
en |
dc.identifier.doi |
10.1109/ITSC.2010.5625109 |
en |
dc.identifier.spage |
1166 |
en |
dc.identifier.epage |
1171 |
en |