HEAL DSpace

Affine-invariant modeling of shape-appearance images applied on sign language handshape classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Roussos, A en
dc.contributor.author Theodorakis, S en
dc.contributor.author Pitsikalis, V en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T02:46:40Z
dc.date.available 2014-03-01T02:46:40Z
dc.date.issued 2010 en
dc.identifier.issn 15224880 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32771
dc.subject Affine Transformation en
dc.subject Sign Language en
dc.subject.other Affine transformations en
dc.subject.other Hand configuration en
dc.subject.other Image coefficient en
dc.subject.other Linear combinations en
dc.subject.other Pose variation en
dc.subject.other Segmentation and tracking en
dc.subject.other Sign language en
dc.subject.other Video data en
dc.subject.other Image processing en
dc.subject.other Linear transformations en
dc.subject.other Imaging systems en
dc.title Affine-invariant modeling of shape-appearance images applied on sign language handshape classification en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2010.5651358 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2010.5651358 en
heal.identifier.secondary 5651358 en
heal.publicationDate 2010 en
heal.abstract We propose a novel affine-invariant modeling of hand shapeappearance images, which offers a compact and descriptive representation of the hand configurations. Our approach combines: 1) A hybrid representation of both shape and appearance of the hand that models the handshapes without any landmark points. 2) Modeling of the shape-appearance images with a linear combination of variation images that is followed by an affine transformation, which accounts for modest pose variation. 3) Finally, an optimization based fitting process that results on the estimated variation image coefficients that are further employed as features. The proposed modeling is applied on handshapes from Sign Language video data after segmentation and tracking. It is evaluated on extensive experiments of handshape classification, which investigate the effect of the involved parameters and moreover provide a variety of comparisons to baseline approaches found in the literature. The results of at least 10.5% absolute improvement indicate the effectiveness of our approach in the handshape classification problem. © 2010 IEEE. en
heal.journalName Proceedings - International Conference on Image Processing, ICIP en
dc.identifier.doi 10.1109/ICIP.2010.5651358 en
dc.identifier.spage 1417 en
dc.identifier.epage 1420 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής