dc.contributor.author |
Lanaridis, A |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:40Z |
|
dc.date.available |
2014-03-01T02:46:40Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32777 |
|
dc.subject |
Computational Intelligence |
en |
dc.subject |
Multi Objective Optimization |
en |
dc.subject |
multiobjective optimization |
en |
dc.subject |
pareto front |
en |
dc.subject.other |
Artificial immune networks |
en |
dc.subject.other |
NSGA-II |
en |
dc.subject.other |
Pareto front |
en |
dc.subject.other |
Cloning |
en |
dc.subject.other |
Multiobjective optimization |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
An artificial immune network for multi-objective optimization |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-15822-3_65 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-15822-3_65 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper presents a method for approximating the Pareto front of a given function using Artificial Immune Networks. The proposed algorithm uses cloning and mutation to create local subsets of the Pareto front, and combines elements of these local fronts in a way that maximizes the diversity. The method is compared against SPEA and NSGA-II in a number of problems from the ZDT test suite, yielding satisfactory results. © 2010 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-15822-3_65 |
en |
dc.identifier.volume |
6353 LNCS |
en |
dc.identifier.issue |
PART 2 |
en |
dc.identifier.spage |
531 |
en |
dc.identifier.epage |
536 |
en |