dc.contributor.author |
Alexandridis, G |
en |
dc.contributor.author |
Siolas, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:46:40Z |
|
dc.date.available |
2014-03-01T02:46:40Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32778 |
|
dc.subject |
recommender system |
en |
dc.subject |
User Preferences |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Collaborative recommender systems |
en |
dc.subject.other |
Constructive neural network algorithm |
en |
dc.subject.other |
Limited information |
en |
dc.subject.other |
matrix |
en |
dc.subject.other |
Recommender systems |
en |
dc.subject.other |
User interfaces |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
An efficient collaborative recommender system based on k-separability |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-15825-4_25 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-15825-4_25 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Most recommender systems usually have too many items to recommend to too many users using limited information. This problem is formally known as the sparsity of the ratings' matrix, because this is the structure that holds user preferences. This article outlines a collaborative recommender system, that tries to amend this situation. The system is built around the notion of k-separability combined with a constructive neural network algorithm. © 2010 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-15825-4_25 |
en |
dc.identifier.volume |
6354 LNCS |
en |
dc.identifier.issue |
PART 3 |
en |
dc.identifier.spage |
198 |
en |
dc.identifier.epage |
207 |
en |