dc.contributor.author |
Kominis, Y |
en |
dc.contributor.author |
Bountis, T |
en |
dc.date.accessioned |
2014-03-01T02:46:41Z |
|
dc.date.available |
2014-03-01T02:46:41Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0218-1274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32787 |
|
dc.subject |
Analytical solutions |
en |
dc.subject |
Nonautonomous systems |
en |
dc.subject |
Piecewise linear systems |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Multidisciplinary Sciences |
en |
dc.subject.other |
Analytical solutions |
en |
dc.subject.other |
Autonomous components |
en |
dc.subject.other |
Non-autonomous system |
en |
dc.subject.other |
Nonautonomous |
en |
dc.subject.other |
Nonautonomous dynamical systems |
en |
dc.subject.other |
Periodic system |
en |
dc.subject.other |
Physical phenomena |
en |
dc.subject.other |
Piece-wise linear systems |
en |
dc.subject.other |
Piecewise linear |
en |
dc.subject.other |
Time interval |
en |
dc.subject.other |
Dynamical systems |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Piecewise linear techniques |
en |
dc.title |
Analytical solutions of systems with piecewise linear dynamics |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1142/S0218127410025570 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218127410025570 |
en |
heal.language |
English |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
A class of nonautonomous dynamical systems, consisting of an autonomous nonlinear system and an autonomous linear periodic system, each acting by itself at different time intervals, is studied. It is shown that under certain conditions for the durations of the linear and the nonlinear time intervals, the dynamics of the nonautonomous piecewise linear system is closely related to that of its nonlinear autonomous component. As a result, families of explicit periodic, nonperiodic and localized breather-like solutions are analytically obtained for a variety of interesting physical phenomena. © 2010 World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Bifurcation and Chaos |
en |
dc.identifier.doi |
10.1142/S0218127410025570 |
en |
dc.identifier.isi |
ISI:000276977400033 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
509 |
en |
dc.identifier.epage |
518 |
en |