dc.contributor.author |
Kosmopoulos, DI |
en |
dc.contributor.author |
Voulodimos, AS |
en |
dc.contributor.author |
Varvarigou, TA |
en |
dc.date.accessioned |
2014-03-01T02:46:42Z |
|
dc.date.available |
2014-03-01T02:46:42Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32795 |
|
dc.subject |
Behavior recognition |
en |
dc.subject |
Hidden Markov models |
en |
dc.subject |
Multi-camera classification |
en |
dc.subject.other |
Behavior recognition |
en |
dc.subject.other |
Gaussians |
en |
dc.subject.other |
Human behaviors |
en |
dc.subject.other |
Industrial environments |
en |
dc.subject.other |
Limited visibility |
en |
dc.subject.other |
Motion history images |
en |
dc.subject.other |
Multi-cameras |
en |
dc.subject.other |
Multiple cameras |
en |
dc.subject.other |
Multiple views |
en |
dc.subject.other |
Target recognition |
en |
dc.subject.other |
Visual behavior |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Behavioral research |
en |
dc.subject.other |
Cameras |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Tracking (position) |
en |
dc.subject.other |
Video cameras |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.title |
Behavior recognition from multiple views using fused hidden Markov models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-12842-4_41 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-12842-4_41 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this work, we provide a framework for recognizing human behavior from multiple cameras in structured industrial environments. Since target recognition and tracking can be very challenging, we bypass these problems by employing an approach similar to Motion History Images for feature extraction. Modeling and recognition are performed through the use of Hidden Markov Models (HMMs) with Gaussian observation likelihoods. The problems of limited visibility and occlusions are addressed by showing how the framework can be extended for multiple cameras, both at the feature and at the state level. Finally, we evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we discuss the obtained results. © Springer-Verlag Berlin Heidelberg 2010. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-12842-4_41 |
en |
dc.identifier.volume |
6040 LNAI |
en |
dc.identifier.spage |
345 |
en |
dc.identifier.epage |
350 |
en |