HEAL DSpace

Behavior recognition from multiple views using fused hidden Markov models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Voulodimos, AS en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T02:46:42Z
dc.date.available 2014-03-01T02:46:42Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32795
dc.subject Behavior recognition en
dc.subject Hidden Markov models en
dc.subject Multi-camera classification en
dc.subject.other Behavior recognition en
dc.subject.other Gaussians en
dc.subject.other Human behaviors en
dc.subject.other Industrial environments en
dc.subject.other Limited visibility en
dc.subject.other Motion history images en
dc.subject.other Multi-cameras en
dc.subject.other Multiple cameras en
dc.subject.other Multiple views en
dc.subject.other Target recognition en
dc.subject.other Visual behavior en
dc.subject.other Artificial intelligence en
dc.subject.other Behavioral research en
dc.subject.other Cameras en
dc.subject.other Feature extraction en
dc.subject.other Tracking (position) en
dc.subject.other Video cameras en
dc.subject.other Hidden Markov models en
dc.title Behavior recognition from multiple views using fused hidden Markov models en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-12842-4_41 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-12842-4_41 en
heal.publicationDate 2010 en
heal.abstract In this work, we provide a framework for recognizing human behavior from multiple cameras in structured industrial environments. Since target recognition and tracking can be very challenging, we bypass these problems by employing an approach similar to Motion History Images for feature extraction. Modeling and recognition are performed through the use of Hidden Markov Models (HMMs) with Gaussian observation likelihoods. The problems of limited visibility and occlusions are addressed by showing how the framework can be extended for multiple cameras, both at the feature and at the state level. Finally, we evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we discuss the obtained results. © Springer-Verlag Berlin Heidelberg 2010. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-12842-4_41 en
dc.identifier.volume 6040 LNAI en
dc.identifier.spage 345 en
dc.identifier.epage 350 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής