dc.contributor.author |
Roniotis, A |
en |
dc.contributor.author |
Marias, K |
en |
dc.contributor.author |
Sakkalis, V |
en |
dc.contributor.author |
Stamatakos, G |
en |
dc.contributor.author |
Zervakis, M |
en |
dc.date.accessioned |
2014-03-01T02:46:43Z |
|
dc.date.available |
2014-03-01T02:46:43Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32807 |
|
dc.subject |
Affective Computing |
en |
dc.subject |
Brain Tumor |
en |
dc.subject |
Finite Difference |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Tumor Cells |
en |
dc.subject.other |
Algebraic expression |
en |
dc.subject.other |
Brain tumors |
en |
dc.subject.other |
Common models |
en |
dc.subject.other |
Diffusion-reaction equation |
en |
dc.subject.other |
Diffusive model |
en |
dc.subject.other |
Finite difference |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Finite elements |
en |
dc.subject.other |
Partial differential |
en |
dc.subject.other |
Simulation time |
en |
dc.subject.other |
Spatio-temporal variation |
en |
dc.subject.other |
Test case |
en |
dc.subject.other |
Tumor cells |
en |
dc.subject.other |
Finite difference method |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Computer simulation |
en |
dc.title |
Comparing finite elements and finite differences for developing diffusive models of glioma growth |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IEMBS.2010.5625973 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IEMBS.2010.5625973 |
en |
heal.identifier.secondary |
5625973 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Glioma is the most aggressive type of brain tumor. Several mathematical models have been developed during the last two decades, towards simulating the mechanisms that govern the development of glioma. The most common models use the diffusion-reaction equation (DRE) for simulating the spatiotemporal variation of tumor cell concentration. The proposed diffusive models have mainly used finite differences (FDs) or finite elements (FEs) for the approximation of the solution of the partial differential DRE. This paper presents experimental results on the comparison of the FEs and FDs, especially focused on the glioma model case. It is studied how the different meshes of brain can affect computational consistency, simulation time and efficiency of the model. The experiments have been studied on a test case, for which there is a known algebraic expression of the solution. Thus, it is possible to calculate the error that the different models yield. © 2010 IEEE. |
en |
heal.journalName |
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10 |
en |
dc.identifier.doi |
10.1109/IEMBS.2010.5625973 |
en |
dc.identifier.spage |
6797 |
en |
dc.identifier.epage |
6800 |
en |