dc.contributor.author |
Doka, K |
en |
dc.contributor.author |
Tsoumakos, D |
en |
dc.contributor.author |
Koziris, N |
en |
dc.date.accessioned |
2014-03-01T02:46:46Z |
|
dc.date.available |
2014-03-01T02:46:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32839 |
|
dc.subject |
data cube |
en |
dc.subject |
data warehousing |
en |
dc.subject |
distributed systems |
en |
dc.subject |
time series |
en |
dc.subject |
updates |
en |
dc.subject.other |
Customizable |
en |
dc.subject.other |
Data cube |
en |
dc.subject.other |
Data warehousing |
en |
dc.subject.other |
Distributed storage |
en |
dc.subject.other |
Distributed systems |
en |
dc.subject.other |
Ordered data |
en |
dc.subject.other |
Prototype implementations |
en |
dc.subject.other |
Query response |
en |
dc.subject.other |
Shared nothing |
en |
dc.subject.other |
Target application |
en |
dc.subject.other |
Time-series data |
en |
dc.subject.other |
Software prototyping |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Warehouses |
en |
dc.subject.other |
World Wide Web |
en |
dc.subject.other |
Data warehouses |
en |
dc.title |
Efficient updates for a shared nothing analytics platform |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1779599.1779606 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1779599.1779606 |
en |
heal.identifier.secondary |
1779606 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper we describe a cloud-based data-warehouselike system especially targeted to time series data. Apart from the benefits that a distributed storage built on top of a shared-nothing architecture offers, our system is designed to efficiently cope with continuous, on-line updates of temporally ordered data without compromising the query throughput. Through a totally customizable process performing asynchronous aggregation of past records, we achieve significant gains in storage and update times compared to traditional methods, maintaining a high accuracy in query responses for our target application. Experiments using our prototype implementation over an actual testbed prove that our scheme considerably accelerates (by a factor above 3) the update procedure and reduces required storage by at least 30%. We also show how these gains are related to the level and rate of aggregation performed. © 2010 ACM. |
en |
heal.journalName |
ACM International Conference Proceeding Series |
en |
dc.identifier.doi |
10.1145/1779599.1779606 |
en |