dc.contributor.author |
Eqtami, A |
en |
dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:46:47Z |
|
dc.date.available |
2014-03-01T02:46:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32853 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77957806211&partnerID=40&md5=1f5d165774a158080907af70da247143 |
en |
dc.relation.uri |
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5531089 |
en |
dc.relation.uri |
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05531089 |
en |
dc.subject |
Continuous Time |
en |
dc.subject |
Discrete Time System |
en |
dc.subject |
Measurement Error |
en |
dc.subject |
Model Predictive Control |
en |
dc.subject |
Input To State Stable |
en |
dc.subject.other |
Continuous monitoring |
en |
dc.subject.other |
Continuous time |
en |
dc.subject.other |
Control laws |
en |
dc.subject.other |
Discrete time system |
en |
dc.subject.other |
Event-triggered |
en |
dc.subject.other |
Input to state stable |
en |
dc.subject.other |
Model-predictive control approach |
en |
dc.subject.other |
Digital control systems |
en |
dc.subject.other |
Measurement errors |
en |
dc.subject.other |
Model predictive control |
en |
dc.subject.other |
Potential flow |
en |
dc.subject.other |
Predictive control systems |
en |
dc.subject.other |
Discrete time control systems |
en |
dc.title |
Event-triggered control for discrete-time systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.secondary |
5531089 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, event-triggered strategies for control of discrete-time systems are proposed and analyzed. Similarly to the continuous-time case, the plant is assumed input-to-state stable with respect to measurement errors and the control law is updated once a triggering condition involving the norm of a measurement error is violated. The results are also extended to a self-triggered formulation, where the next control updates are decided at the previous ones, thus relaxing the need for continuous monitoring of the measurement error. The overall framework is then used in a novel Model Predictive Control approach. The results are illustrated through simulated examples. © 2010 AACC. |
en |
heal.journalName |
Proceedings of the 2010 American Control Conference, ACC 2010 |
en |
dc.identifier.spage |
4719 |
en |
dc.identifier.epage |
4724 |
en |