HEAL DSpace

Face tracking and head pose estimation using convolutional neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Asteriadis, S en
dc.contributor.author Karpouzis, K en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:46:47Z
dc.date.available 2014-03-01T02:46:47Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32855
dc.subject Face Tracking en
dc.subject Head Pose Estimation en
dc.subject Neural Network en
dc.subject.other Bounding box en
dc.subject.other Convolutional neural network en
dc.subject.other Face orientation en
dc.subject.other Face Tracking en
dc.subject.other Head Pose Estimation en
dc.subject.other Proposed architectures en
dc.subject.other Rotation angles en
dc.subject.other Tracking techniques en
dc.subject.other Training data en
dc.subject.other Well-aligned en
dc.subject.other Animation en
dc.subject.other Convolution en
dc.subject.other Gesture recognition en
dc.subject.other Motion estimation en
dc.subject.other Neural networks en
dc.title Face tracking and head pose estimation using convolutional neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1924035.1924046 en
heal.identifier.secondary http://dx.doi.org/10.1145/1924035.1924046 en
heal.publicationDate 2010 en
heal.abstract In applications where face orientation is necessary, but in unpretending environments in terms of lighting, equipment, resolution, etc, employing local tracking techniques would usually fail to give accurate results, regarding the issue of head pose estimation. However, in a similar manner, holistic techniques require the face to be well aligned with the training data. This pre-assumes correct and accurate face tracking, which is also a challenging issue. Here, we propose a face tracker, adjusted to each person's face chrominance values, and learnt online. Based on the face bounding box, Convolutional Neural Networks (CNNs) are employed, in order to calculate face orientation. CNNs are ideal for cases where a lot of distortions exist in the data, and the proposed architecture only utilizes subsets of classifiers, excluding those corresponding to rotation angles far from the current. en
heal.journalName ACM International Conference Proceeding Series en
dc.identifier.doi 10.1145/1924035.1924046 en
dc.identifier.spage 19 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής