HEAL DSpace

Feature map hashing: Sub-linear indexing of appearance and global geometry

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis, Y en
dc.contributor.author Tolias, G en
dc.contributor.author Kalantidis, Y en
dc.date.accessioned 2014-03-01T02:46:47Z
dc.date.available 2014-03-01T02:46:47Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32856
dc.subject feature maps en
dc.subject hashing en
dc.subject image retrieval en
dc.subject indexing geometry en
dc.subject sub-linear indexing en
dc.subject.other Background clutter en
dc.subject.other Excellent performance en
dc.subject.other Feature map en
dc.subject.other Global geometries en
dc.subject.other hashing en
dc.subject.other Image alignment en
dc.subject.other Image geometries en
dc.subject.other Image indexing and retrieval en
dc.subject.other indexing geometry en
dc.subject.other Indexing process en
dc.subject.other Inverted files en
dc.subject.other Local feature en
dc.subject.other Min-wise independent permutations en
dc.subject.other New approaches en
dc.subject.other Photometric variations en
dc.subject.other Query time en
dc.subject.other Retrieval process en
dc.subject.other Set intersection en
dc.subject.other Shape parameters en
dc.subject.other Similarity measure en
dc.subject.other sub-linear indexing en
dc.subject.other Visual word en
dc.subject.other Computational geometry en
dc.subject.other Image retrieval en
dc.subject.other Indexing (of information) en
dc.title Feature map hashing: Sub-linear indexing of appearance and global geometry en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1873951.1873985 en
heal.identifier.secondary http://dx.doi.org/10.1145/1873951.1873985 en
heal.publicationDate 2010 en
heal.abstract We present a new approach to image indexing and retrieval, which integrates appearance with global image geometry in the indexing process, while enjoying robustness against viewpoint change, photometric variations, occlusion, and background clutter. We exploit shape parameters of local features to estimate image alignment via a single correspondence. Then, for each feature, we construct a sparse spatial map of all remaining features, encoding their normalized position and appearance, typically vector quantized to visual word. An image is represented by a collection of such feature maps and RANSAC-like matching is reduced to a number of set intersections. Because the induced dissimilarity is still not a metric, we extend min-wise independent permutations to collections of sets and derive a similarity measure for feature map collections. We then exploit sparseness to build an inverted file whereby the retrieval process is sub-linear in the total number of images, ideally linear in the number of relevant ones. We achieve excellent performance on 104 images, with a query time in the order of milliseconds. © 2010 ACM. en
heal.journalName MM'10 - Proceedings of the ACM Multimedia 2010 International Conference en
dc.identifier.doi 10.1145/1873951.1873985 en
dc.identifier.spage 231 en
dc.identifier.epage 240 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής